在直角坐標系中,已知中心在原點,離心率為
的橢圓E的一個焦點為圓
的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點,過P作兩條斜率之積為的直線
,當直線
都與圓
相切時,求P點坐標.
(1);(2)
.
解析試題分析:(1)圓心坐標是已知的,故橢圓的焦點是已知的,從而半焦距已知了,又有離心率,故半長軸長
也能求出,從而求出
,而根據(jù)題意,橢圓方程是標準方程,可其方程易得;(2)設(shè)P點坐標為
,再設(shè)一條切線的斜率為
,則另一條切線的斜率為
,三個未知數(shù)
需要三個方程,點P在橢圓上,一個等式,兩條直線都圓的切線,利用圓心到切線的距離等于圓的半徑又得到兩個等式,三個等量關(guān)系,三個未知數(shù)理論上可解了,當然具體解題時,可設(shè)切線斜率為
,則點斜率式寫出直線方程,利用圓心到切線距離等于圓半徑得出關(guān)于
的方程,而
是這個方程的兩解,由韋達定理得
,這個結(jié)果又是
,就列出了關(guān)于P點坐標的一個方程,再由P點在橢圓上,可解出P點坐標.
試題解析:(1)圓的標準方程為,圓心為
,所以
,又
,
,
,而據(jù)題意橢圓的方程是標準方程,故其方程為
.4分
(2)設(shè),得
∵,依題意
到
的距離為
整理得同理
∴是方程
的兩實根10分
12分
∴14分
16分
考點:(1)橢圓的標準方程;(2)圓的切線.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知的兩頂點坐標
,
,圓
是
的內(nèi)切圓,在邊
,
,
上的切點分別為
,
(從圓外一點到圓的兩條切線段長相等),動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)直線與曲線
的另一交點為
,當點
在以線段
為直徑的圓上時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|,當P在圓上運動時,求點M的軌跡C的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)設(shè)直線經(jīng)過點
(0,1),且與橢圓C交于
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,過點P(4,0)且不垂直于x軸直線
與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓
相交于
、
兩點. ①若線段
中點的橫坐標為
,求斜率
的值;②若點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)雙曲線以橢圓
的兩個焦點為焦點,且雙曲線
的一條漸近線是
,
(1)求雙曲線的方程;
(2)若直線與雙曲線
交于不同兩點
,且
都在以
為圓心的圓上,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com