已知數(shù)列{an}的通項(xiàng)公式為an=n2+kn+2(n∈N*),若數(shù)列{an}為單調(diào)遞增數(shù)列,則實(shí)數(shù)k的取值范圍是________.
k>-3
分析:若數(shù)列{an}為單調(diào)遞增數(shù)列,則an+1-an>0對(duì)于任意n∈N*都成立,得出2n+1+k>0,采用分離參數(shù)法求實(shí)數(shù)k的取值范圍 即可.
解答:∵an=n2+kn+2①∴an+1=(n+1)2+k(n+1)+2 ②
②-①得an+1-an=2n+1+k.若數(shù)列{an}為單調(diào)遞增數(shù)列,則an+1-an>0對(duì)于任意n∈N*都成立,即 2n+1+k>0.
移向得k>-(2n+1),k只需大于-(2n+1)的最大值即可,而易知當(dāng)n=1時(shí),-(2n+1)的最大值 為-3,所以k>-3
故答案為:k>-3.
點(diǎn)評(píng):本題考查數(shù)列的函數(shù)性質(zhì),考查了轉(zhuǎn)化、計(jì)算能力,分離參數(shù)法的應(yīng)用.