已知向量,設(shè)函數(shù).
(1)求函數(shù)上的單調(diào)遞增區(qū)間;
(2)在中,,分別是角,的對(duì)邊,為銳角,若,的面積為,求邊的長.

(1)函數(shù)上的單調(diào)遞增區(qū)間為,;(2)邊的長為.

解析試題分析:(1)根據(jù)平面向量的數(shù)量積,應(yīng)用和差倍半的三角函數(shù)公式,將化簡(jiǎn)為.通過研究
的單調(diào)減區(qū)間得到函數(shù)上的單調(diào)遞增區(qū)間為.
(2)根據(jù)兩角和的正弦公式,求得,
利用三角形的面積,解得,
結(jié)合,由余弦定理得
從而得解.
試題解析:(1)由題意得
              3分
,
解得:,
,,或
所以函數(shù)上的單調(diào)遞增區(qū)間為,    6分
(2)由得:
化簡(jiǎn)得:
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/2/1fznh2.png" style="vertical-align:middle;" />,解得:         9分
由題意知:,解得,
,所以

故所求邊的長為.            12分
考點(diǎn):平面向量的數(shù)量積,和差倍半的三角函數(shù),三角函數(shù)的圖像和性質(zhì),正弦定理、余弦定理的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果點(diǎn)P(sinθ·cosθ,2cosθ)位于第三象限,試判斷角θ所在的象限;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函數(shù)f(x)=
m·(m+n)+t的圖象中,對(duì)稱中心到對(duì)稱軸的最小距離為,且當(dāng)x∈[0,]時(shí),f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=sin x+sin.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)不畫圖,說明函數(shù)y=f(x)的圖像可由y=sin x的圖像經(jīng)過怎樣的變化得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù))的最小正周期為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個(gè)單位,再向上平移個(gè)單位,得到函數(shù)的圖象.若上至少含有個(gè)零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=sin2x+sin xcos x,x.
(1)求f(x) 的零點(diǎn);
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象的一個(gè)最高點(diǎn)為與之相鄰的與軸的一個(gè)交點(diǎn)為
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)減區(qū)間和函數(shù)圖象的對(duì)稱軸方程;
(3)用“五點(diǎn)法”作出函數(shù)在長度為一個(gè)周期區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2sinxcosx-2cos2x+l.
(I)求f(x)的最小正周期;
(Ⅱ)若∈(0,),且f()=1,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=cos,x∈R
(1)求f的值;
(2)若cos θ,θ,求f.

查看答案和解析>>

同步練習(xí)冊(cè)答案