【題目】如圖,某大風(fēng)車(chē)的半徑為2米,每12秒旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面1米,點(diǎn)O在地面上的射影為A.風(fēng)車(chē)圓周上一點(diǎn)M從最低點(diǎn)O開(kāi)始,逆時(shí)針?lè)较蛐D(zhuǎn)40秒后到達(dá)P點(diǎn),則點(diǎn)P到點(diǎn)A的距離與點(diǎn)P的高度之和為( )

A. 5米B. (4+)米

C. (4+)米D. (4+)米

【答案】D

【解析】

以圓心為原點(diǎn)以水平方向?yàn)?/span>軸方向,以豎直方向?yàn)?/span>軸方向建立平面直角坐標(biāo)系,則根據(jù)大風(fēng)車(chē)的半徑為,圓上最低點(diǎn)離地面1秒轉(zhuǎn)動(dòng)一圈,可得到間的函數(shù)關(guān)系式求出的坐標(biāo)即可求出點(diǎn)到點(diǎn)的距離與點(diǎn)的高度之和.

以圓心為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閥軸方向,

建立平面直角坐標(biāo)系,如圖所示.

設(shè)∠OP=θ,運(yùn)動(dòng)t(秒)后與地面的距離為f(t),又T=12,

∴θ=t,∴f(t)=3-2cos t,t≥0,

風(fēng)車(chē)圓周上一點(diǎn)M從最低點(diǎn)O開(kāi)始,逆時(shí)針?lè)较蛐D(zhuǎn)40秒后到達(dá)P點(diǎn),

θ=6π+,P(,1),

∴點(diǎn)P的高度為3-2×=4.∵A(0,-3),∴AP=,

∴點(diǎn)P到點(diǎn)A的距離與點(diǎn)P的高度之和為(4+)米,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)制造商在2019年年初公告:公司計(jì)劃2019年的生產(chǎn)目標(biāo)為43萬(wàn)輛.已知該公司近三年的汽車(chē)生產(chǎn)量如表所示:

年份(年)

2016

2017

2018

產(chǎn)量(萬(wàn)輛)

8

18

30

如果我們分別將20162017,2018,2019定義為第一、二、三、四年.現(xiàn)在有兩個(gè)函數(shù)模型:二次函數(shù)模型,指數(shù)型函數(shù)模型,哪個(gè)模型能更好地反映該公司年產(chǎn)量y與年份x的關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)PQ從點(diǎn)出發(fā)在單位圓上運(yùn)動(dòng),點(diǎn)P按逆時(shí)針?lè)较蛎棵腌娹D(zhuǎn)弧度,點(diǎn)Q按順時(shí)針?lè)较蛎棵腌娹D(zhuǎn)弧度,則P,Q兩點(diǎn)在第2019次相遇時(shí),點(diǎn)P的坐標(biāo)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)是(

①球的半徑是球面上任意一點(diǎn)與對(duì)球心的連線;

②球面上任意兩點(diǎn)的連線是球的直徑;

③用一個(gè)平面截一個(gè)球,得到的截面是一個(gè)圓;

④用一個(gè)平面截一個(gè)球,得到的截面是一個(gè)圓面;

⑤以半圓的直徑所在直線為軸旋轉(zhuǎn)形成的曲面叫做球;

⑥空間中到定點(diǎn)的距離等于定長(zhǎng)的所有的點(diǎn)構(gòu)成的曲面是球面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是一質(zhì)點(diǎn)做簡(jiǎn)諧運(yùn)動(dòng)的圖象,則下列結(jié)論正確的是(

A.該質(zhì)點(diǎn)的運(yùn)動(dòng)周期為0.7s

B.該質(zhì)點(diǎn)的振幅為5

C.該質(zhì)點(diǎn)在0.1s0.5s時(shí)運(yùn)動(dòng)速度為零

D.該質(zhì)點(diǎn)的運(yùn)動(dòng)周期為0.8s

E.該質(zhì)點(diǎn)在0.3s0.7s時(shí)運(yùn)動(dòng)速度為零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某地一天從時(shí)的溫度變化曲線近似滿足函數(shù).

(1)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差.

(2)若有一種細(xì)菌在之間可以生存,則在這段時(shí)間內(nèi),該細(xì)菌最多能存活多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)求的定義域;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)甲,乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨(dú)立的.

(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;

(2)若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得萬(wàn)元,若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得利潤(rùn)萬(wàn)元,求該企業(yè)可獲得利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)對(duì)現(xiàn)有設(shè)備進(jìn)行了改造,為了了解設(shè)備改造后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)其質(zhì)量指標(biāo)值,若質(zhì)量指標(biāo)值在內(nèi),則該產(chǎn)品視為合格品,否則視為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.

(1)完成列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān):

設(shè)備改造前

設(shè)備改造后

合計(jì)

合格品

不合格品

合計(jì)

(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;

(3)企業(yè)將不合格品全部銷(xiāo)毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)180元;質(zhì)量指標(biāo)值落在內(nèi)的定為二等品,每件售價(jià)150元;其他的合格品定為三等品,每件售價(jià)120元.根據(jù)頻數(shù)分布表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買(mǎi)兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案