【題目】已知某地一天從時的溫度變化曲線近似滿足函數(shù).

(1)求該地區(qū)這一段時間內(nèi)溫度的最大溫差.

(2)若有一種細菌在之間可以生存,則在這段時間內(nèi),該細菌最多能存活多長時間?

【答案】(1)20;(2)(小時).

【解析】

1)利用三角函數(shù)的性質求函數(shù)在的最大值與最小值可得最大溫差.

2)令,解不等式,確定解在的區(qū)間長度.

(1)由函數(shù)易知,當函數(shù)取得最大值時 ,解得,又,所以當時,函數(shù)取得最大值,此時最高溫度為,當函數(shù)取得最小值時 ,解得,當時,函數(shù)取得最小值,此時最低溫度為,所以最大溫差為.

(2)解法1:令,得,因為,所以.

,得.因為,所以.

故該細菌能存活的最長時間為(小時).

解法2:令,,

,即,,

,取,故該細菌能存活的最長時間為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知傾斜角為α的直線l過點A21).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系曲線C的極坐標方程為ρ2sinθ,直線l與曲線C分別交于P,Q兩點.

1)寫出直線l的參數(shù)方程和曲線C的直角坐標方程.

2)求|APAQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(多選題)有下列幾個命題,其中正確的命題是(

A.函數(shù)上是增函數(shù)

B.函數(shù)上是減函數(shù)

C.函數(shù)的單調(diào)區(qū)間是

D.已知上是增函數(shù),若,則有

E.已知函數(shù)是奇函數(shù),則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某大風車的半徑為2米,每12秒旋轉一周,它的最低點O離地面1米,點O在地面上的射影為A.風車圓周上一點M從最低點O開始,逆時針方向旋轉40秒后到達P點,則點P到點A的距離與點P的高度之和為( )

A. 5米B. (4+)米

C. (4+)米D. (4+)米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將標號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片,選出每列標號最小的卡片,將這些卡片中標號最大的數(shù)設為;選出每行標號最大的卡片,將這些卡片中標號最小的數(shù)設為

甲同學認為有可能比大,乙同學認為有可能相等,那么甲乙兩位同學的說法中(

A. 甲對乙不對 B. 乙對甲不對 C. 甲乙都對 D. 甲乙都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)的一種電器的固定成本(即固定投資)為0.5萬元,每生產(chǎn)一臺這種電器還需可變成本(即另增加投資)25元,市場對這種電器的年需求量為5百臺.已知這種電器的銷售收入R與銷售量t的關系可用拋物線表示,如圖.

(注:銷售量的單位:百臺,銷售收入與純收益的單位:萬元,生產(chǎn)成本=固定成本+可變成本,精確到1臺和0.01萬元)

1)寫出銷售收入R與銷售量t之間的函數(shù)關系式;

2)若銷售收入減去生產(chǎn)成本為純收益,寫出純收益與銷售量的函數(shù)關系式,并求銷售量是多少時,純收益最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校共有學生15000人,其中男生10500人,女生4500人.為調(diào)查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

(1)應收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是梯形,,底面的中點.

()證明:;

()與平面所成角的大小為,求二面角的正弦值.

查看答案和解析>>

同步練習冊答案