19.海軍某艦隊在一未知海域向正西方向行駛(如圖),在A處測得北側(cè)一島嶼的頂端D的底部C在西偏北30°的方向上,行駛4千米到達B處后,測得該島嶼的頂端D的底部C在西偏北75°方向上,山頂D的仰角為30°,求此島嶼露出海平面的部分CD的高度.

分析 把已知數(shù)據(jù)過渡到△ABC中,由正弦定理可得.

解答 解:在三角形ABC中,∠A=30°,∠C=75°-30°=45°
.…(2分)
由正弦定理得BC=$\frac{4sin30°}{sin45°}$=2$\sqrt{2}$,CD=BCtan30°=$\frac{2\sqrt{6}}{3}$(千米).
所以此島露出海平面的部分CD為$\frac{2\sqrt{6}}{3}$千米.…(12分)

點評 本題考查解三角形的實際應(yīng)用,從實際問題中抽象出三角形是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知log23=a,log72=b,則log421=$\frac{ab+1}{2b}$.(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$[{\sqrt{n}}]$表示不超過$\sqrt{n}$的最大整數(shù).${S_1}=[{\sqrt{1}}]+[{\sqrt{2}}]+[{\sqrt{3}}]=3$,${S_2}=[{\sqrt{4}}]+[{\sqrt{5}}]+[{\sqrt{6}}]+[{\sqrt{7}}]+[{\sqrt{8}}]=10$,${S_3}=[{\sqrt{9}}]+[{\sqrt{10}}]+[{\sqrt{11}}]+[{\sqrt{12}}]+[{\sqrt{13}}]+[{\sqrt{14}}]+[{\sqrt{15}}]=21$,那么S9=171.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合P={x|2≤x≤3},Q={x|x2≤4},則P∪Q=( 。
A.(-2,3]B.[-2,3]C.[-2,2]D.(-∞,-2]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某企業(yè)生產(chǎn)A、B、C三種家電,經(jīng)市場調(diào)查決定調(diào)整生產(chǎn)方案,計劃本季度(按不超過480個工時計算)生產(chǎn)A、B、C三種家電共120臺,其中A家電至少生產(chǎn)20臺,已知生產(chǎn)A、B、C三種家電每臺所需的工時分別為3、4、6個工時,每臺的產(chǎn)值分別為20、30、40千元,則按此方案生產(chǎn),此季度最高產(chǎn)值為(  )千元.
A.3600B.350C.4800D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知tanθ=$\frac{1}{2}$,則tan($\frac{π}{4}$-θ)=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,其中正(主)視圖中半圓的半徑為1,則該幾何體的體積為( 。
A.24-πB.24-$\frac{π}{3}$C.24-$\frac{3π}{2}$D.24-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.己知圓M (x+1)2+y2=64,定點N(1,0),點P為圓M上的動點,點Q在NP上,點G在線段MP上,且滿足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,則點G的軌跡方程是( 。
A.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{14}$=1B.$\frac{{x}^{2}}{17}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{14}$+$\frac{{y}^{2}}{13}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:函數(shù)y=3-ax+1的圖象恒過定點(1,3);命題q:若函數(shù)y=f(x-3)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=3對稱,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

同步練習(xí)冊答案