4.已知tanθ=$\frac{1}{2}$,則tan($\frac{π}{4}$-θ)=( 。
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 利用兩角和的正切公式,求得tan($\frac{π}{4}$-θ)的值.

解答 解:∵tanθ=$\frac{1}{2}$,則tan($\frac{π}{4}$-θ)=$\frac{1-tanθ}{1+tanθ}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,
故選:C.

點評 本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)填寫如表:
α$\frac{π}{6}$$\frac{π}{4}$$\frac{π}{3}$
sinα$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$
cosα$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$
(2)化簡:$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)全集U=R,集合A={x∈Z|y=$\sqrt{4-{x}^{2}}$},B={y|y=2x,x>1},則A∩(∁UB)={-2,-1,0,1,2},.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,若a+c=2b,3sinB=5sinA,則角C=( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.海軍某艦隊在一未知海域向正西方向行駛(如圖),在A處測得北側(cè)一島嶼的頂端D的底部C在西偏北30°的方向上,行駛4千米到達B處后,測得該島嶼的頂端D的底部C在西偏北75°方向上,山頂D的仰角為30°,求此島嶼露出海平面的部分CD的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)α∈(-$\frac{π}{2}$,$\frac{π}{2}$),sinα=-$\frac{\sqrt{3}}{3}$,求sin2α及cos(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k},其中k為正常數(shù)
(1)設(shè)u=x1x2,求u的取值范圍
(2)求證:當k≥1時,不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≤($\frac{k}{2}-\frac{2}{k}$)2對任意(x1,x2)∈D恒成立
(3)求使不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}-\frac{2}{k}$)2對任意(x1,x2)∈D恒成立的k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知命題p:方程$\frac{{x}^{2}}{12-m}$+$\frac{{y}^{2}}{m-4}$=1表示焦點在x軸上的橢圓;命題q:點(m,3)在圓(x-10)2+(y-1)2=13內(nèi).若p∨q為真命題,p∧q為假命題,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tan(3π-α)=-$\frac{1}{2}$,tan(β-α)=-$\frac{1}{3}$,則tan β=( 。
A.1B.$\frac{1}{7}$C.$\frac{5}{7}$D.$\frac{5}{9}$

查看答案和解析>>

同步練習(xí)冊答案