【題目】一臺機器按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉(zhuǎn)的速度而變化,具有線性相關(guān)關(guān)系,下表為抽樣試驗的結(jié)果:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

8

10

12

14

16

每小時生產(chǎn)有缺點的零件數(shù)y(件)

5

7

8

9

11

參考公式: , = =
(1)如果y對x有線性相關(guān)關(guān)系,求回歸方程;
(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多有10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在設(shè)么范圍內(nèi)?

【答案】
(1)解: =12, =8,

40+70+96+126+176﹣5×12×8=28,

64+100+144+196+256﹣5×144=40,

∴b=0.7,a=8﹣0.7×12=﹣0.4

∴回歸直線方程為:y=0.7x﹣0.4


(2)解:由上一問可知0.7x﹣0.4≤10,

解得x≤14.85.


【解析】(1)先做出橫標(biāo)和縱標(biāo)的平均數(shù),做出利用最小二乘法求線性回歸方程的系數(shù)的量,做出系數(shù),求出a,寫出線性回歸方程.(2)根據(jù)上一問做出的線性回歸方程,使得函數(shù)值小于或等于10,解出不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),其中為函數(shù)的導(dǎo)函數(shù).判斷在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個集合U,A,B及元素間的關(guān)系如圖所示,則(CUA)∩B=(
A.{5,6}
B.{3,5,6}
C.{3}
D.{0,4,5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=sin (2x﹣ )(x∈R),給出下列三個結(jié)論: ①對于任意的x∈R,都有f(x)=cos (2x﹣ );
②對于任意的x∈in R,都有f(x+ )=f(x﹣ );
③對于任意的x∈R,都有f( ﹣x)=f( +x).
其中,全部正確結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x+y)=f(x)+f(y)且f(1)=2,則f(1)+f(2)+…+f(n)不能等于(
A.f(1)+2f(1)+…+nf(1)
B.f(
C.n(n+1)
D.n(n+1)f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù),根據(jù)表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則下列結(jié)論錯誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
B.t的取值必定是3.15
C.回歸直線一定過點(4,5,3,5)
D.A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;

(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

同步練習(xí)冊答案