【題目】已知a為實(shí)數(shù),若函數(shù)f(x)=|x2+ax+2|﹣x2在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為

【答案】[﹣8,0)
【解析】解:f(x)=|x2+ax+2|﹣x2= ,
設(shè)x2+ax+2=0的兩個(gè)根分別為x1 , x2 , (x1<x2),
則f(x)= ,
∵當(dāng)x≥x2時(shí),函數(shù)f(x)=ax+2,函數(shù)f(x)在(2,+∞)上單調(diào)遞減,
∴a<0,
當(dāng)x1<x<x2時(shí),拋物線的對(duì)稱軸為x=﹣ =﹣
若函數(shù)f(x)在(2,+∞)上單調(diào)遞減,則﹣ ≤2,得﹣8≤a<0.
若f(x)在區(qū)間(﹣∞,﹣1)遞減,
則x1= ≥﹣1,
即﹣a﹣ ≥﹣2,
≥a﹣2,
∵﹣8≤a<0,
≥a﹣2恒成立,
綜上﹣8≤a<0,
所以答案是:[﹣8,0)

【考點(diǎn)精析】掌握函數(shù)的單調(diào)性是解答本題的根本,需要知道注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生參加“省級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù) 的定義域;
(2)若存在a∈R,對(duì)任意 ,總存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)先閱讀:
在等式cos2x=2cos2x﹣1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x﹣1)′,由求導(dǎo)法則,得(﹣sin2x)2=4cosx(﹣sinx),化簡(jiǎn)得等式:sin2x=2cosxsinx.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明:
(2)對(duì)于正整數(shù)n≥3,求證:
(i)
(ii) ;
(iii)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)= ,則f(1)=;不等式f(f(x))≤7的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋裝有大小相同的小球9個(gè),其中紅球2個(gè)、黑球3個(gè)、白球4個(gè),現(xiàn)從中抽取2次,每次抽取一個(gè)球.
(1)若有放回地抽取2次,求兩次所取的球的顏色不同的概率;
(2)若不放回地抽取2次,取得紅球記2分,取得黑球記1分,取得白球記0分,記兩次取球的得分之和為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且a2=2,S5=15.
(1)求通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=2an﹣an , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)函數(shù):
①y=3﹣x;②y=2x1(x>0);③y=x2+2x﹣10,;④
其中定義域與值域相同的函數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案