【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:F(x)=2f(x)+g(x)= (a>0且a≠1)
要使函數(shù)有意義,則 ,解得﹣1<x<1,
∴函數(shù)F(x)的定義域?yàn)椋ī?,1).
令F(x)=0,則 …(*)
方程變?yōu)? ,(x+1)2=1﹣x,即x2+3x=0
解得x1=0,x2=﹣3.
經(jīng)檢驗(yàn)x=﹣3是(*)的增根,∴方程(*)的解為x=0,
∴函數(shù)F(x)的零點(diǎn)為0
(2)解:由于函數(shù) 在定義域D上是增函數(shù).可得:
①當(dāng)a>1時(shí),由復(fù)合函數(shù)的單調(diào)性知:函數(shù)f(x)=loga(x+1),
在定義域D上是增函數(shù).
∴函數(shù)F(x)=2f(x)+g(x)在定義域D上是增函數(shù).
②當(dāng)0<a<1時(shí),由復(fù)合函數(shù)的單調(diào)性知:
函數(shù)f(x)=loga(x+1), ,在定義域D上是減函數(shù).
∴函數(shù)F(x)=2f(x)+g(x)在定義域D上是減函數(shù)
(3)解:?jiǎn)栴}等價(jià)于關(guān)于x的方程2m2﹣3m﹣5=F(x)在區(qū)間[0,1)內(nèi)僅有一解,
①當(dāng)a>1時(shí),由(2)知,函數(shù)F(x)在[0,1)上是增函數(shù),
∴F(x)∈[0,+∞),
∴只需2m2﹣3m﹣5≥0,
解得:m≤﹣1,或 .
②當(dāng)0<a<1時(shí),由(2)知,函數(shù)F(x)在[0,1)上是減函數(shù),
∴F(x)∈(﹣∞,0],
∴只需2m2﹣3m﹣5≤0,
解得: .
綜上所述,當(dāng)0<a<1時(shí): ;
當(dāng)a>1時(shí),m≤﹣1,或
【解析】(1)利用對(duì)數(shù)函數(shù)的定義域即可的得出,利用對(duì)數(shù)的運(yùn)算法則即可得出函數(shù)的零點(diǎn);(2)通過對(duì)a分類討論,利用一次函數(shù)、反比例函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性即可得出復(fù)合函數(shù)F(x)的單調(diào)性;(3)利用(2)的函數(shù)F(x)的單調(diào)性可得其值域,進(jìn)而轉(zhuǎn)化為即一元二次不等式的解集.
【考點(diǎn)精析】掌握函數(shù)的定義域及其求法和函數(shù)單調(diào)性的判斷方法是解答本題的根本,需要知道求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個(gè)數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為( )
A.(0,1)
B.[0, )
C.(0, ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)在5次英語口語測(cè)試中的成績統(tǒng)計(jì)如圖的莖葉圖所示.
(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語口語競(jìng)賽,從兩同學(xué)的平均成績和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對(duì)學(xué)生甲在今后的三次英語口語競(jìng)賽成績進(jìn)行預(yù)測(cè),記這三次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為實(shí)數(shù),若函數(shù)f(x)=|x2+ax+2|﹣x2在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個(gè)焦點(diǎn)分別為, ,過點(diǎn)與軸垂直的直線交橢圓于、兩點(diǎn), 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線: 與軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則φ可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有( )
①冪函數(shù)的圖象一定不過第四象限;
②已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax﹣1﹣1恒過定點(diǎn)(1,0);
③若存在x1 , x2∈I,當(dāng)x1<x2時(shí),f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
④ 的單調(diào)減區(qū)間是(﹣∞,0)∪(0,+∞).
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想數(shù)列{an}的通項(xiàng)公式an .
(2)用數(shù)學(xué)歸納法證明你猜想的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com