如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面α內(nèi)作菱形ABCD,邊長(zhǎng)為1,∠BAD=60°,再在α的上側(cè),分別以△ABD與△CBD為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(1)求證:PQ⊥BD;
(2)設(shè)AC與BD交于E,求cos∠PEQ;
(3)求點(diǎn)P到平面QBD的距離.

【答案】分析:(1)欲證PQ⊥BD,取BD中點(diǎn)E,連接PE、QE,只須證明BD⊥平面PQE,從而B(niǎo)D⊥PQ.
(2)先在三角形PEQ分別求出各邊的長(zhǎng)度,再利用余弦定理即可求得cos∠PEQ.
(3)由(1)知BD⊥平面PEQ.設(shè)點(diǎn)P到平面QBD的距離為h,利用三棱錐的等體積變換即可求得點(diǎn)P到平面QBD的距離.
解答:解:(1)由P-ABD,Q-CBD是相同正三棱錐,可知△PBD與△QBD是全等等腰△.取BD中點(diǎn)E,連接PE、QE,則BD⊥PE,BD⊥QE.
故BD⊥平面PQE,從而B(niǎo)D⊥PQ.
(2)作PM⊥平面α,垂足為M,作QN⊥平面α,垂足為N,則PM∥QN,M、N分別是正△ABD與正△BCD的中心,從而點(diǎn)A、M、E、N、C共線(xiàn),PM與QN確定平面PACQ,且PMNQ為矩形.可得ME=NE=
PE=QE=,PQ=MN=,∴cos∠PEQ=
(3)由(1)知BD⊥平面PEQ.設(shè)點(diǎn)P到平面QBD的距離為h,則

.∴
點(diǎn)評(píng):本小題主要考查異面直線(xiàn)所成的角、空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系、點(diǎn)、線(xiàn)、面間的距離計(jì)算,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面α內(nèi)作菱形ABCD,邊長(zhǎng)為1,∠BAD=60°,再在α的上側(cè),分別以△ABD與△CBD為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(1)求證:PQ⊥BD;
(2)設(shè)AC與BD交于E,求cos∠PEQ;
(3)求點(diǎn)P到平面QBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面α內(nèi)作菱形ABCD,邊長(zhǎng)為1,∠BAD=60°,再在α的上方,分別以△ABD與△CBD為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(Ⅰ)求證:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求點(diǎn)P到平面QBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年濰坊市七模) 如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長(zhǎng)為1,∠BAD=60°,再在的上側(cè),分別以△與△為底面安裝上相同的正棱錐P-ABDQ-CBD,∠APB=90°.

 

  (1)求證:PQBD;

 。2)求二面角P-BD-Q的余弦值;

  (3)求點(diǎn)P到平面QBD的距離;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年長(zhǎng)郡中學(xué)一模文)(12分)如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長(zhǎng)為1,∠BAD=60°,再在面的上方,分別以△與△為底面安裝上相同的正棱錐P-ABDQ-CBD,∠APB=90°.

(Ⅰ)求證:PQBD

(Ⅱ)求二面角P-BD-Q的余弦值;    

(Ⅲ)求點(diǎn)P到平面QBD的距離;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三第六次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)

如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長(zhǎng)為1,∠BAD=60°,再在的上側(cè),分別以△與△為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.

  (1)求證:PQ⊥BD;

 。2)求點(diǎn)P到平面QBD的距離.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案