在極坐標(biāo)系中,點(diǎn)A(2,
4
)
到直線ρsin(θ+
π
4
)=
2
2
的距離為
 
分析:先將極坐標(biāo)方程轉(zhuǎn)化為普通方程,再由點(diǎn)到直線的距離公式求解.
解答:解:ρsin(θ+
π
4
)=
2
2
可化為x+y=1,A(2,
4
)
可化為A(
2
,-
2
),則點(diǎn)A到直線的距離d=
2
2

故答案是:
2
2
點(diǎn)評:本題主要考查極坐標(biāo)方程和普通方程間的轉(zhuǎn)化和點(diǎn)到直線的距離.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)A(
2
,
π
4
)到直線pcosθ+psinθ-6=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)A在曲線ρ=2sin(θ+
π4
)
上,點(diǎn)B在直線ρcosθ=-1上,則|AB|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選講)
在極坐標(biāo)系中,點(diǎn)A(2,-
π
3
)
到直線l:ρcos(θ-
π
6
)=1
的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①在極坐標(biāo)系中,點(diǎn)A(2,-
π
3
)到直線l:ρcos(θ-
π
6
)=1
的距離為
1
1

②(不等式選講選做題) 設(shè)函數(shù)f(x)=|x-2|+x,g(x)=|x+1|,則g(x)<f(x)成立時(shí)x的取值范圍
(-3,1)∪(3,+∞)
(-3,1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)A(1,π)到直線ρcosθ=2的距離是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案