拋物線y2=4x的焦點為F,過點P數(shù)學(xué)公式的直線交拋物線于A、B兩點,且P恰好為AB的中點,則|AF|+|BF|=________.

7
分析:設(shè)A(x1,y1),B(x2,y2),由拋物線的定義,得|AF|=x1+1,|BF|=x2+1.又根據(jù)中點坐標(biāo)公式,可得x1+x2=5,代入即可得到|AF|+|BF|的值.
解答:解:由題意可得F(1,0)
設(shè)A(x1,y1),B(x2,y2),拋物線的準(zhǔn)線:x=-1,過A、B分別作準(zhǔn)線的垂線,垂足分別為C、D,
根據(jù)拋物線的定義,得|AF|=|AC|=x1+1,|BF|=|BD|=x2+1,
故|AF|+|BF|=(x1+x2)+2
∵AB中點為P(,1),
(x1+x2)=,可得x1+x2=5
∴|AF|+|BF|=(x1+x2)+2=7
故答案為:7
點評:本題給出拋物線的弦AB的中點坐標(biāo),求A、B兩點到焦點距離之和,著重考查了拋物線的定義、標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=4x的焦點為F,過點M(-1,0)的直線在第一象限交拋物線于A、B,使
AF
BF
=0
,則直線AB的斜率k=(  )
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為橢圓C的右焦點,且C的離心率e=
12
,直線y=kx+2交C于A,B兩點,M是線段AB的中點,射線MO交C于點N.
(Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)試證在(I)的條件下,橢圓C在點N處的切線與AB平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)已知拋物線y2=4x的焦點為F,過點F的直線交拋物線于A,B兩點.
(Ⅰ)若
AF
=2
FB
,求直線AB的斜率;
(Ⅱ)設(shè)點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南三模)下面給出的四個命題中:
①以拋物線y2=4x的焦點為圓心,且過坐標(biāo)原點的圓的方程為(x-1)2+y2=1;
②若m=-2,則直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直;
③命題“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④將函數(shù)y=sin2x的圖象向右平移
π
3
個單位,得到函數(shù)y=sin(2x-
π
6
)的圖象.
其中是真命題的有
①②③
①②③
(將你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)已知拋物線y2=4x的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點P、Q且
F1P
F2Q
=-5

(I)求點T的橫坐標(biāo)x0;
(II)若以F1,F(xiàn)2為焦點的橢圓C過點(1,
2
2
)

①求橢圓C的標(biāo)準(zhǔn)方程;
②過點F2作直線l與橢圓C交于A,B兩點,設(shè)
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案