分析 求出原函數(shù)的導(dǎo)函數(shù),根據(jù)當(dāng)x=-1時(shí)函數(shù)f(x)的極值為-$\frac{7}{12}$,f′(-1)=0,f(-1)=-$\frac{7}{12}$,求出a,b的值,代入原函數(shù)解析式后課求f(1)的值
解答 解:∵$f(x)=\frac{1}{3}{x^3}+{a^2}{x^2}+ax+b$,
∴f′(x)=x2+2a2x+a,
∵當(dāng)x=-1時(shí)函數(shù)f(x)的極值為$-\frac{7}{12}$,
∴f′(-1)=1-2a2+a=0,f(-1)=-$\frac{1}{3}$+a2-a+b=-$\frac{7}{12}$
解得$\left\{\begin{array}{l}{a=1}\\{b=-\frac{1}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=0}\end{array}\right.$,
∴f(x)=$\frac{1}{3}$x3+x2+x-$\frac{1}{4}$,或f(x)=$\frac{1}{3}$x3+$\frac{1}{4}$x2-$\frac{1}{2}$x,
∴f(1)=$\frac{1}{3}$+1+1-$\frac{1}{4}$=$\frac{25}{12}$,或f(1)=$\frac{1}{3}$+$\frac{1}{4}$-$\frac{1}{2}$=$\frac{1}{12}$,
故答案為:$\frac{25}{12}$或$\frac{1}{12}$.
點(diǎn)評 本題主要考查函數(shù)在某點(diǎn)取得極值的條件,需要注意的是極值點(diǎn)處的導(dǎo)數(shù)等于0,但導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn),屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{1}{4},\frac{5}{8}}]$ | B. | $[{\frac{1}{2},\frac{5}{4}}]$ | C. | $({0,\frac{1}{2}}]$ | D. | $({0,\frac{1}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拼圖數(shù)x/個(gè) | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y/分鐘 | 62 | 68 | 75 | 81 | 89 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com