分析 (1)利用相互獨立事件的概率計算公式即可得出.
(2)記女生四關(guān)都闖過為事件B,則$P(B)=\frac{4}{5}×\frac{3}{4}×\frac{2}{3}×\frac{1}{2}=\frac{1}{5}$,?的取值可能為0,1,2,3,4,利用相互獨立與互斥事件的概率計算公式即可得出.
解答 解:(1)記男生四關(guān)都闖過為事件A,則$P(A)=\frac{5}{6}×\frac{4}{5}×\frac{3}{4}×\frac{2}{3}=\frac{1}{3}$.
(2)記女生四關(guān)都闖過為事件B,則$P(B)=\frac{4}{5}×\frac{3}{4}×\frac{2}{3}×\frac{1}{2}=\frac{1}{5}$,
因為$P({ε=0})={({\frac{2}{3}})^2}{({\frac{4}{5}})^2}=\frac{64}{225}$,$P({ε=1})=C_2^1\frac{1}{3}•\frac{2}{3}{({\frac{4}{5}})^2}+C_2^1\frac{1}{5}•\frac{4}{5}•{({\frac{2}{3}})^2}=\frac{96}{225}$,$P({ε=2})=C_2^2{({\frac{1}{3}})^2}{({\frac{4}{5}})^2}+C_2^2{({\frac{1}{5}})^2}{({\frac{2}{3}})^2}+C_2^1\frac{1}{3}•\frac{2}{3}•C_2^1•\frac{1}{5}•\frac{4}{5}=\frac{52}{225}$,$P({ε=3})=C_2^1\frac{1}{3}•\frac{2}{3}{({\frac{1}{5}})^2}+C_2^1\frac{1}{5}•\frac{4}{5}•{({\frac{1}{3}})^2}=\frac{12}{225}$,$P({ε=4})={({\frac{1}{3}})^2}{({\frac{1}{5}})^2}=\frac{1}{225}$.
所以的分布列如下:
? | 0 | 1 | 2 | 3 | 4 |
P | $\frac{64}{225}$ | $\frac{96}{225}$ | $\frac{52}{225}$ | $\frac{12}{225}$ | $\frac{1}{225}$ |
點評 本題考查了相互獨立與互斥事件的概率計算公式、隨機變量的分布列與數(shù)學(xué)期望計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P | B. | Q | C. | {-1,1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 0.25 | 0.5 | 1 | 2 | 4 |
y | 16 | 12 | 5 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱 | |
B. | f(x)的圖象關(guān)于點($\frac{π}{4}$,0)對稱 | |
C. | 把f(x)的圖象向左平移$\frac{π}{12}$個單位長度,得到一個偶函數(shù)的圖象 | |
D. | f(x)的最小正周期為π,且在[0,$\frac{π}{6}$]上為增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com