【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.

(1)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;

(2)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.

(3)利用分層抽樣的方法在[0,0.5) [3.5,4) [4,4.5)三組中選取5位居民,再?gòu)倪@5位居民中任意取三人,求這三人恰有兩人來(lái)自同一組的概率。

【答案】(1)3.6(萬(wàn));(2)2.9;(3)

【解析】試題分析:本題主要考查頻率分布直方圖、頻率、頻數(shù)的計(jì)算公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力. 第一問(wèn),由高×組距=頻率,計(jì)算每組中的頻率,因?yàn)樗蓄l率之和為1,計(jì)算出a的值;第二問(wèn),利用高×組距=頻率,先計(jì)算出每人月均用水量不低于3噸的頻率,再利用頻率×樣本總數(shù)=頻數(shù),計(jì)算所求人數(shù);第三問(wèn),將前6組的頻率之和與前5組的頻率之和進(jìn)行比較,得出2.5≤x<3,再進(jìn)行計(jì)算.

試題解析:()由頻率分布直方圖知,月均用水量在[0,0.5)中的頻率為0.08×0.5=0.04,

同理,在[0.5,1)[1.5,2),[2,2.5)[3,3.5),[3.5,4),[4,4.5)中的頻率分別為0.08,0.200.26,0.060.04,0.02

0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1

解得a=0.30

)由(),100位居民每人月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12

由以上樣本的頻率分布,可以估計(jì)全市30萬(wàn)居民中月均用水量不低于3噸的人數(shù)為

300 000×0.12="36" 000

)因?yàn)榍?/span>6組的頻率之和為0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,

而前5組的頻率之和為0.04+0.08+0.15+0.20+0.26=0.73<0.85,

所以2.5≤x<3

0.3×(x–2.5)=0.85–0.73,

解得x=2.9

所以,估計(jì)月用水量標(biāo)準(zhǔn)為2.9噸時(shí),85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量 與尺寸 之間滿足關(guān)系式 為大于 的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

對(duì)數(shù)據(jù)作了處理,相關(guān)統(tǒng)計(jì)量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求 關(guān)于 的回歸方程(提示:由已知, 的線性關(guān)系);
(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間 內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對(duì)于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側(cè)有, 兩個(gè)蔬菜基地,江岸的另一側(cè)點(diǎn)處有一個(gè)超市.已知、中任意兩點(diǎn)間的距離為千米,超市欲在之間建一個(gè)運(yùn)輸中轉(zhuǎn)站, 兩處的蔬菜運(yùn)抵處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵處,由于, 兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從處出發(fā)的運(yùn)輸費(fèi)為每千米元.從處出發(fā)的運(yùn)輸費(fèi)為每千米元,貨輪的運(yùn)輸費(fèi)為每千米元.

(1)設(shè),試將運(yùn)輸總費(fèi)用(單位:元)表示為的函數(shù),并寫(xiě)出自變量的取值范圍;

(2)問(wèn)中轉(zhuǎn)站建在何處時(shí),運(yùn)輸總費(fèi)用最。坎⑶蟪鲎钚≈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:

①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;

②基本事件空間是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B為互斥事件,但不是對(duì)立事件;

③某校高三(1)班和高三(2)班的人數(shù)分別是m,n,若一?荚嚁(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為;

④如果平面外的一條直線上有兩個(gè)點(diǎn)到這個(gè)平面的距離相等,那么這條直線與這個(gè)平面的位置關(guān)系為平行或相交。

其中真命題的序號(hào)是__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用隨機(jī)模擬的方法可以估計(jì)圖中由曲線與兩直線x=2y=0所圍成的陰影部分的面積S①先產(chǎn)生兩組0~1的均勻隨機(jī)數(shù),a=RAND( ),b=RAND( ); 做變換,令x=2a,y=2b;③產(chǎn)生N個(gè)點(diǎn)(xy),并統(tǒng)計(jì)落在陰影內(nèi)的點(diǎn)(xy)的個(gè)數(shù),已知某同學(xué)用計(jì)算機(jī)做模擬試驗(yàn)結(jié)果,選取了以下20組數(shù)據(jù)(如圖所示),則據(jù)此可估計(jì)S的值為____

x

y

y-0.5*x*x

0.441414481

1.849136261

1.751712889

1.836710045

0.508951247

-1.177800647

1.389538592

0.999398689

0.033989941

0.745446842

1.542498362

1.264652865

0.981548556

1.928476536

1.446757752

1.87036015

1.287100762

-0.462022784

1.20252176

1.271691664

0.548662372

1.931929493

0.920911487

-0.945264297

0.450507939

1.561663263

1.460184562

1.356178263

1.856227093

0.936617353

0.408489063

1.564834147

1.481402489

0.163980707

0.135034106

0.121589269

1.868152447

0.350326824

-1.394669959

0.252753469

1.287326597

1.255384439

1.253648606

1.872701968

1.086884555

0.679831952

0.140283887

-0.090801854

1.544339084

0.804655288

-0.387836316

1.563089931

0.872844524

-0.348780542

1.17458008

0.867440167

0.177620985

1.057219794

1.791271879

1.232415032

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}n項(xiàng)和為Sn,已知,S1,S2,S4成等比數(shù)列,{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,是邊長(zhǎng)為的等邊三角形,分別是的中點(diǎn)

)求證:平面;

)求證:平面平面;

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某幾何體的三視圖.

(1)求該幾何體外接球的體積;

(2)求該幾何體內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機(jī)器,生產(chǎn)需要投入固定成本萬(wàn)元,生產(chǎn)與銷售均已百臺(tái)計(jì)數(shù),且每生產(chǎn)臺(tái),還需增加可變成本萬(wàn)元,若市場(chǎng)對(duì)該產(chǎn)品的年需求量為臺(tái),每生產(chǎn)百臺(tái)的實(shí)際銷售收入近似滿足函數(shù)

)試寫(xiě)出第一年的銷售利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(單位:百臺(tái),)的函數(shù)關(guān)系式:(說(shuō)明:銷售利潤(rùn)=實(shí)際銷售收入-成本)

)因技術(shù)等原因,第一年的年生產(chǎn)量不能超過(guò)臺(tái),若第一年的年支出費(fèi)用(萬(wàn)元)與年產(chǎn)量(百臺(tái))的關(guān)系滿足,問(wèn)年產(chǎn)量為多少百臺(tái)時(shí),工廠所得純利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案