已知橢圓過(guò)點(diǎn)(0,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅰ)A,B為橢圓C的左右頂點(diǎn),直線與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),|DE|·|DF|恒為定值.
解:(Ⅰ)由題意可知,b=1,
又因?yàn)閑=,且a2=b2+c2,解得a=2,
所以橢圓的方程為
(Ⅱ)由題意可得:A(﹣2,0),B(2,0).
設(shè)P(x0,y0),由題意可得:﹣2<x0<2,
所以直線AP的方程為,令,則,
;
同理:直線BP的方程為,
,則,
;
所以=,
即4y02=4﹣x02,代入上式,
所以|DE|·|DF|=1,
所以|DE|·|DF|為定值1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓數(shù)學(xué)公式過(guò)點(diǎn)(0,1),且離心率為數(shù)學(xué)公式
(Ⅰ)求橢圓C的方程;
(Ⅱ)A,B為橢圓C的左右頂點(diǎn),直線數(shù)學(xué)公式與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),|DE|•|DF|恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省云浮市新興一中高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓過(guò)點(diǎn)(0,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)A,B為橢圓C的左右頂點(diǎn),直線與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),|DE|•|DF|恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省揭陽(yáng)市建新中學(xué)高三(上)第二次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓過(guò)點(diǎn)(0,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)A,B為橢圓C的左右頂點(diǎn),直線與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),|DE|•|DF|恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市東城區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓過(guò)點(diǎn)(0,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)A,B為橢圓C的左右頂點(diǎn),直線與x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),|DE|•|DF|恒為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案