對于任意的實數(shù)a、b,記max{a,b}=數(shù)學公式.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)y=f(x)(x∈R)是奇函數(shù),且在x=1處取得極小值-2,函數(shù)y=g(x) (x∈R)是正比例函數(shù),其圖象與x≥0時的函數(shù)y=f(x)的圖象如圖所示,則下列關于函數(shù)y=F(x)的說法中,正確的是


  1. A.
    y=F(x)為奇函數(shù)
  2. B.
    y=F(x)有極大值F(-1)
  3. C.
    y=F(x)的最小值為-2,最大值為2
  4. D.
    y=F(x)在(-3,0)上為增函數(shù)
B
分析:在同一個坐標系中作出兩函數(shù)的圖象,橫坐標一樣時取函數(shù)值較大的那一個,如圖,由圖象可以看出選項的正確與否.
解答:解:∵f(x)*g(x)=max{f(x),g(x)},
∴f(x)*g(x)=max{f(x),g(x)}的定義域為R,
f(x)*g(x)=max{f(x),g(x)},畫出其圖象如圖中實線部分,
由圖象可知:y=F(x)的圖象不關于原點對稱,不為奇函數(shù);
故A不正確
y=F(x)有極大值F(-1)且有極小值F(0);故B正確
y=F(x)在(-3,0)上不為單調函數(shù);故C不正確
y=F(x)的沒有最小值和最大值,故D不正確
故選B.
點評:本題考點是函數(shù)的最值及其幾何意義,本題考查新定義,需要根據題目中所給的新定義作出相應的圖象由圖象直觀觀察出函數(shù)的最值,對于一些分段類的函數(shù),其最值往往借助圖象來解決.本題的關鍵是讀懂函數(shù)的圖象,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)定義在R上的函數(shù),對于任意的實數(shù)a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f(
12
)的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對于任意的實數(shù)a,b都有(a+b)2≤2(a2+b2)恒成立,則函數(shù)f(x)=|sinx|+|cosx|的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=λ1(
a
3
x3+
b-1
2
x2+x)+λ2x•3x(a,b∈R,a>0)

(1)當λ1=1,λ2=0時,設x1,x2是f(x)的兩個極值點,
①如果x1<1<x2<2,求證:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)時,函數(shù)g(x)=f'(x)+2(x-x2)的最小值為h(a),求h(a)的最大值.
(2)當λ1=0,λ2=1時,
①求函數(shù)y=f(x)-3(ln3+1)x的最小值.
②對于任意的實數(shù)a,b,c,當a+b+c=3時,求證3aa+3bb+3cc≥9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意的實數(shù)a、b,記max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)y=f(x)(x∈R)是奇函數(shù),且在x=1處取得極小值-2,函數(shù)y=g(x) (x∈R)是正比例函數(shù),其圖象與x≥0時的函數(shù)y=f(x)的圖象如圖所示,則下列關于函數(shù)y=F(x)的說法中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意的實數(shù)a、b,記max{a,b}=
a(a≥b)
b(a<b)
.設F(x)=max{f(x),g(x)}(x∈R),其中g(x)=
1
3
x
,y=f(x)是奇函數(shù).當x≥0時,y=f(x)的圖象與g(x)的圖象如圖所示.則下列關于函數(shù)y=F(x)的說法中,正確的是( 。

查看答案和解析>>

同步練習冊答案