10.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,BC=2AD=4,AB=CD,∠ABC=60°,N為線段PC上一點(diǎn),CN=3NP,M為AD的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求點(diǎn)N到平面 PAB的距離.

分析 (1)過N作NE∥BC,交PB于點(diǎn)E,連AE,推導(dǎo)出四邊形AMNE是平行四邊形,從而MN∥AE,由此能證明MN∥平面PAB.
(2)連接AC,推導(dǎo)出AC⊥AB,PA⊥AC,從而AC⊥平面PAB,由此能求出N點(diǎn)到平面PAB的距離.

解答 證明:(1)過N作NE∥BC,交PB于點(diǎn)E,連AE,
∵CN=3NP,∴EN∥BC且EN=$\frac{1}{4}$BC,
又∵AD∥BC,BC=2AD=4,M為AD的中點(diǎn),
∴AM∥BC且AM=$\frac{1}{4}$BC,
∴EN∥AM且EN=AM,
∴四邊形AMNE是平行四邊形,∴MN∥AE,
又∵M(jìn)N?平面PAB,AE?平面PAB,
∴MN∥平面PAB.…(6分)
解:(2)連接AC,在梯形ABCD中,
由BC=2AD=4,AB=CD,∠ABC=60°,得AB=2,
∴AC=2$\sqrt{3}$,AC⊥AB.
∵PA⊥平面ABCD,∴PA⊥AC.
又∵PA∩AB=A,∴AC⊥平面PAB.
又∵CN=3NP,
∴N點(diǎn)到平面PAB的距離d=$\frac{1}{4}$AC=$\frac{\sqrt{3}}{2}$.…(12分)

點(diǎn)評(píng) 本題考查線面平行的證明,考查點(diǎn)到平面的距離的求不地,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,△A′O′B′表示水平放置△AOB的直觀圖,B′在x′軸上,A′O′和x′軸垂直,且A′O′=8,則△AOB的邊OB上的高為16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3+2a7+3a15-a17=3,則S17=$\frac{51}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合 A={-2,-1,0,2,3},B={y|y=|x|,x∈A},則A∩B=( 。
A.{0,1,2,3}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,則 z=y-x的最大值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三棱錐的三視圖如圖所示,其中俯視圖為直角三角形,俯視圖為等腰直角三角形,則此三棱錐的體積等于( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線C:y2=4x與直線y=k(x+1)(k>0)相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則k=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l1:(m-2)x-y+5=0與l2:(m-2)x+(3-m)y+2=0平行,則實(shí)數(shù)m的值為( 。
A.2或4B.1或4C.1或2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲乙兩個(gè)競(jìng)賽隊(duì)都參加了6場(chǎng)比賽,比賽得分情況的經(jīng)營(yíng)如圖如圖(單位:分)),其中乙隊(duì)的一個(gè)得分?jǐn)?shù)字被污損,那么估計(jì)乙隊(duì)的平均得分大于甲隊(duì)的平均得分的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案