分析 設(shè)出點(diǎn)P1、P2、P的坐標(biāo),利用向量坐標(biāo)表示出$\overrightarrow{{P}_{1}P}$、$\overrightarrow{{PP}_{2}}$,利用向量相等列出方程求出x、y的值即可.
解答 解:設(shè)點(diǎn)P1(x1,y1),點(diǎn)P2(x2,y2),點(diǎn)P(x,y);
則$\overrightarrow{{P}_{1}P}$=(x-x1,y-y1),$\overrightarrow{{PP}_{2}}$=(x2-x,y2-y),
當(dāng)$\overrightarrow{{P}_{1}P}$=λ$\overrightarrow{P{P}_{2}}$時(shí),(x-x1,y-y1)=λ(x2-x,y2-y),
∴$\left\{\begin{array}{l}{x{-x}_{1}=λ{(lán)(x}_{2}-x)}\\{y{-y}_{1}=λ({y}_{2}-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{{x}_{1}+{λx}_{2}}{1+λ}}\\{y=\frac{{y}_{1}+{λy}_{2}}{1+λ}}\end{array}\right.$,
∴點(diǎn)P的坐標(biāo)是($\frac{{x}_{1}+{λx}_{2}}{1+λ}$,$\frac{{y}_{1}+{λy}_{2}}{1+λ}$).
點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算問(wèn)題,也考查了轉(zhuǎn)化法與數(shù)形結(jié)合思想的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±$\sqrt{1+\sqrt{2}}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\sqrt{\sqrt{2}-1}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com