分析 求得雙曲線的漸近線方程和拋物線的準(zhǔn)線方程,由題意可得p=$\frac{8}{3}$,$\frac{a}$=2,求得M(3,4)代入雙曲線的方程,解方程可得a,b,進(jìn)而得到雙曲線的方程.
解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的漸近線方程為y=±$\frac{a}$x,
拋物線y2=2px的準(zhǔn)線方程為x=-$\frac{p}{2}$,
由題意可得$\frac{p}{2}$=$\frac{4}{3}$,即p=$\frac{8}{3}$,
$\frac{a}$=2,即b=2a①
又M的坐標(biāo)(x0,4),可得16=2px0=$\frac{16}{3}$x0,
解得x0=3,
將M(3,4)代入雙曲線的方程可得$\frac{9}{{a}^{2}}$-$\frac{16}{^{2}}$=1②
由①②解得a=$\sqrt{5}$,b=2$\sqrt{5}$,
即有雙曲線的方程為$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
故答案為:$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
點(diǎn)評 本題考查雙曲線的方程的求法,注意運(yùn)用待定系數(shù)法,考查拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-18,6] | B. | [6-5$\sqrt{2}$,6+5$\sqrt{2}$] | C. | [-16,4] | D. | [-6-5$\sqrt{2}$,-6+5$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | ($\frac{\sqrt{3}}{3}$,1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2b}{a}$,+∞) | B. | ($\frac{a}$,+∞) | C. | [$\frac{a}$,+∞) | D. | [$\frac{a}$,$\frac{2b}{a}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com