【題目】已知拋物線的焦點(diǎn)為F,直線l與拋物線C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)若直線l過(guò)點(diǎn)F且,求直線l的方程;
(2)已知點(diǎn),若直線l不與坐標(biāo)軸垂直,且,證明:直線l過(guò)定點(diǎn).
【答案】(1)或;(2)證明見(jiàn)解析
【解析】
(1)法一:分斜率存在和斜率不存在兩種情況討論,當(dāng)斜率存在時(shí)設(shè)直線方程為與聯(lián)立,利用弦長(zhǎng)公式求解;法二:設(shè)直線方程為,方程聯(lián)立后利用弦長(zhǎng)公式求解;
(2)設(shè)直線方程為與聯(lián)立,由得,利用根與系數(shù)的關(guān)系,得到直線過(guò)定點(diǎn).
解:(1)法一:焦點(diǎn),當(dāng)直線斜率不存在時(shí),方程為,與拋物線的交點(diǎn)坐標(biāo)分別為,,
此時(shí),不符合題意,故直線的斜率存在.
設(shè)直線方程為與聯(lián)立得,
當(dāng)時(shí),方程只有一根,不符合題意,故.
,拋物線的準(zhǔn)線方程為,由拋物線的定義得
,
解得,
所以方程為或
法二:焦點(diǎn),顯然直線不平行于x軸,設(shè)直線方程為,
與聯(lián)立得,設(shè),
,
由,解得,
所以方程為或
(2)設(shè),,
設(shè)直線方程為與聯(lián)立得
,
由得,即
整理得,即
整理得
即,即
故直線方程為過(guò)定點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓E:(a,b>0)過(guò)M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過(guò)點(diǎn)的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn),與不重合),設(shè)直線,的斜率分別為,.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)時(shí),求證:直線恒過(guò)定點(diǎn)并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn),與不重合),設(shè)直線,的斜率分別為,.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)時(shí),求證:直線恒過(guò)定點(diǎn)并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)
(1)是的極小值點(diǎn);
(2)函數(shù)有且只有1個(gè)零點(diǎn);
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間,使在上的值域是,則.
上述說(shuō)法正確的序號(hào)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小區(qū)抽取50戶(hù)居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.
(1)求頻率分布直方圖中的值并估計(jì)這50戶(hù)用戶(hù)的平均用電量;
(2)若將用電量在區(qū)間內(nèi)的用戶(hù)記為類(lèi)用戶(hù),標(biāo)記為低用電家庭,用電量在區(qū)間內(nèi)的用戶(hù)記為類(lèi)用戶(hù),標(biāo)記為高用電家庭,現(xiàn)對(duì)這兩類(lèi)用戶(hù)進(jìn)行問(wèn)卷調(diào)查,讓其對(duì)供電服務(wù)進(jìn)行打分,打分情況見(jiàn)莖葉圖:
①?gòu)?/span>類(lèi)用戶(hù)中任意抽取3戶(hù),求恰好有2戶(hù)打分超過(guò)85分的概率;
②若打分超過(guò)85分視為滿(mǎn)意,沒(méi)超過(guò)85分視為不滿(mǎn)意,請(qǐng)?zhí)顚?xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“滿(mǎn)意度與用電量高低有關(guān)”?
滿(mǎn)意 | 不滿(mǎn)意 | 合計(jì) | |
類(lèi)用戶(hù) | |||
類(lèi)用戶(hù) | |||
合計(jì) |
附表及公式:
<>0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的幾何體中,四邊形為長(zhǎng)方形,平面,平面,且,為上一點(diǎn),且.
(1)求證:平面;
(2)若,,,求此多面體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為拋物線的焦點(diǎn),以為圓心作半徑為的圓,圓與軸的負(fù)半軸交于點(diǎn),與拋物線分別交于點(diǎn).
(1)若為直角三角形,求半徑的值;
(2)判斷直線與拋物線的位置關(guān)系,并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com