【題目】如圖,在三棱柱中,平面,,,分別是,,的中點(diǎn),點(diǎn)在線段上,.
(1)求證:平面;
(2)若平面平面,,,求點(diǎn)到平面的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)由,分別是,的中點(diǎn),可得,再由線面平行的判定定理即可證出;
(2)根據(jù)平面平面,可得點(diǎn)是線段上靠近的四等分點(diǎn),從而可求得,利用等體積法即可求出點(diǎn)到平面的距離.
(1)因?yàn)樵?/span>中,,分別是,的中點(diǎn),
所以,又平面,平面,
所以平面.
(2)設(shè)點(diǎn)到平面的距離為,點(diǎn)到平面的距離為,則
取的中點(diǎn)連結(jié),,則,
又平面,平面,所以平面,
又平面平面,而平面,
所以平面,又平面,所以,
又為的中點(diǎn),所以為的中點(diǎn),
所以點(diǎn)是線段上靠近的四等分點(diǎn),所以,
所以,,
在中,由余弦定理,得
,
所以,
在中,由余弦定理,得
,
所以,
所以,
解得,即點(diǎn)到平面的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的不斷發(fā)展和人們消費(fèi)觀念的不斷提升,越來越多的人日益喜愛旅游觀光.某人想在2019年5月到某景區(qū)旅游觀光,為了避開旅游高峰擁擠,方便出行,他收集了最近5個(gè)月該景區(qū)的觀光人數(shù)數(shù)據(jù)見下表:
月份 | 2018.12 | 2019.1 | 2019.2 | 2019.3 | 2019.4 |
月份編號(hào) | 1 | 2 | 3 | 4 | 5 |
旅游觀光人數(shù)(百萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合旅游觀光人數(shù)少(百萬人)與月份編號(hào)之間的相關(guān)關(guān)系,請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測2019年5月景區(qū)的旅游觀光人數(shù).
(2)當(dāng)?shù)芈糜尉譃榱祟A(yù)測景區(qū)給當(dāng)?shù)氐呢?cái)政帶來的收入狀況,從2019年4月的旅游觀光人群中隨機(jī)抽取了200人,并對他們旅游觀光過程中的開支情況進(jìn)行了調(diào)查,得到如下頻率分布表:
開支金額(千元) | |||||||
頻數(shù) | 10 | 30 | 40 | 60 | 30 | 20 | 10 |
若采用分層抽樣的方法從開支金額低于4千元的游客中抽取8人,再在這8人中抽取3人,記這3人中開支金額低于3千元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
(參考公式:,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線焦點(diǎn)為,直線過與拋物線交于兩點(diǎn).到準(zhǔn)線的距離之和最小為8.
(1)求拋物線方程;
(2)若拋物線上一點(diǎn)縱坐標(biāo)為,直線分別交準(zhǔn)線于.求證:以為直徑的圓過焦點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)( )
A.向左平移個(gè)單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
B.向左平移個(gè)單位長度,縱坐標(biāo)伸長到原來的3倍橫坐標(biāo)不變
C.向右平移個(gè)單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
D.向右平移個(gè)單位長度,縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,四邊形是邊長為2的菱形,為正三角形,與平面所成的角為,平面平面.
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)玩游戲,對于給定的實(shí)數(shù),按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一枚均勻的硬幣,如果出現(xiàn)兩個(gè)正面朝上或兩個(gè)反面朝上,則把乘以2后再減去6;如果出現(xiàn)一個(gè)正面朝上,一個(gè)反面朝上,則把除以2后再加上6,這樣就可得到一個(gè)新的實(shí)數(shù),對實(shí)數(shù)仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù),當(dāng)時(shí),甲獲勝,否則乙獲勝,若甲勝的概率為,則的取值范圍是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點(diǎn)A(6,0),點(diǎn)P是曲線C1上的動(dòng)點(diǎn),Q為AP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于A,B兩點(diǎn),若|AB|≥2,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】投到某出版社的稿件,先由兩位初審專家進(jìn)行評(píng)審,若能通過兩位初審專家的評(píng)審,則直接予以錄用,若兩位初審專家都未予通過,則不予錄用,若恰能通過一位初審專家的評(píng)審,則再由第三位專家進(jìn)行復(fù)審,若能通過復(fù)審專家的評(píng)審,則予以錄用,否則不予錄用.設(shè)稿件能通過各初審專家評(píng)審的概率均為,復(fù)審的稿件能通過評(píng)審的概率為,各專家獨(dú)立評(píng)審,則投到該出版社的1篇稿件被錄用的概率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com