【題目】某學(xué)校為了解學(xué)生的體質(zhì)健康狀況,對(duì)高一、高二兩個(gè)年級(jí)的學(xué)生進(jìn)行了體質(zhì)測(cè)試.現(xiàn)從兩個(gè)年級(jí)學(xué)生中各隨機(jī)選取20人,將他們的測(cè)試數(shù)據(jù),用莖葉圖表示如圖:《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》的等級(jí)標(biāo)準(zhǔn)如表.規(guī)定:測(cè)試數(shù)據(jù)≥60,體質(zhì)健康為合格.

等級(jí)

優(yōu)秀

良好

及格

不及格

測(cè)試數(shù)據(jù)

(Ⅰ)從該校高二年級(jí)學(xué)生中隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生體質(zhì)健康合格的概率;

(Ⅱ)從兩個(gè)年級(jí)等級(jí)為優(yōu)秀的樣本中各隨機(jī)選取一名學(xué)生,求選取的兩名學(xué)生的測(cè)試數(shù)據(jù)平均數(shù)大于95的概率;

(Ⅲ)設(shè)該校高一學(xué)生測(cè)試數(shù)據(jù)的平均數(shù)和方差分別為,高二學(xué)生測(cè)試數(shù)據(jù)的平均數(shù)和方差分別為,試估計(jì)、的大。ㄖ恍鑼懗鼋Y(jié)論)

【答案】(I);(II);(III)

【解析】

(Ⅰ)由莖葉圖可知高二年級(jí)學(xué)生樣本中合格的學(xué)生數(shù)為15,即可計(jì)算出從該校高二年級(jí)學(xué)生中隨機(jī)選取一名學(xué)生體質(zhì)健康合格的概率;

(Ⅱ)由莖葉圖可知高一年級(jí)、高二年級(jí)等級(jí)為優(yōu)的學(xué)生各有三個(gè),用列舉法寫出選取的兩名學(xué)生構(gòu)成的基本事件,即可計(jì)算出選取的兩名學(xué)生的測(cè)試數(shù)據(jù)平均數(shù)大于95的概率;

(Ⅲ)根據(jù)莖葉圖的分布情況即可得到、的大小。

(I)高二年級(jí)學(xué)生樣本中合格的學(xué)生數(shù)為:,

樣本中學(xué)生體質(zhì)健康合格的頻率為

所以從該校高二年級(jí)學(xué)生中隨機(jī)選取一名學(xué)生,估計(jì)這名學(xué)生體質(zhì)健康合格的概率為

(II) 設(shè)等級(jí)為優(yōu)秀的樣本中高一年級(jí)測(cè)試數(shù)據(jù)是93,94,96的學(xué)生分別為,

高二年級(jí)測(cè)試數(shù)據(jù)是90,95,98的學(xué)生分別為

選取的兩名學(xué)生構(gòu)成的基本事件空間為:

,總數(shù)為9,

選取的測(cè)試數(shù)據(jù)平均數(shù)大于95的兩名學(xué)生構(gòu)成的基本事件空間為,總數(shù)為4,

所以從兩個(gè)年級(jí)等級(jí)為優(yōu)秀的樣本中各隨機(jī)選取一名學(xué)生,

選取的兩名學(xué)生的測(cè)試數(shù)據(jù)平均數(shù)大于95的概率為

(III)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬(wàn)元)對(duì)年銷售量(單位:千萬(wàn)件)的影響,統(tǒng)計(jì)了近年投入的年研發(fā)費(fèi)用與年銷售量的數(shù)據(jù),得到散點(diǎn)圖如圖所示:

(Ⅰ)利用散點(diǎn)圖判斷,(其中為大于的常數(shù))哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸方程類型(只要給出判斷即可,不必說(shuō)明理由);

(Ⅱ)對(duì)數(shù)據(jù)作出如下處理:令,得到相關(guān)統(tǒng)計(jì)量的值如下表:

根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

(Ⅲ)已知企業(yè)年利潤(rùn)(單位:千萬(wàn)元)與,的關(guān)系為(其中),根據(jù)(Ⅱ)的結(jié)果,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線交于兩點(diǎn).

1)求證:若直線過(guò)拋物線的焦點(diǎn),則

2)寫出(1)的逆命題,判斷真假,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201616日北京時(shí)間上午11時(shí)30分,朝鮮中央電視臺(tái)宣布成功進(jìn)行了氫彈試驗(yàn),再次震動(dòng)世界,此事件也引起了我國(guó)公民熱議,其中丹東市(丹東市和朝鮮隔江)某QQ聊天群有300名網(wǎng)友,烏魯木齊市某微信群有200名網(wǎng)友,為了解不同地區(qū)我國(guó)公民對(duì)氫彈試驗(yàn)事件的關(guān)注程度,現(xiàn)采用分層抽樣的方法,從中抽取了100名網(wǎng)友,先分別統(tǒng)計(jì)了他們?cè)谀硶r(shí)段發(fā)表的信息條數(shù),再將兩地網(wǎng)友發(fā)表的信息條數(shù)分成5組:,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)求丹東市網(wǎng)友的平均留言條數(shù)(保留整數(shù));

2)為了進(jìn)一步開展調(diào)查,從樣本中留言條數(shù)超過(guò)80條的網(wǎng)友中隨機(jī)抽取2人,求至少抽到一名烏魯木齊市網(wǎng)友的概率;

3)規(guī)定留言條數(shù)不少于70條為強(qiáng)烈關(guān)注”.

①請(qǐng)你根據(jù)已知條件完成下列2×2的列聯(lián)表:

強(qiáng)烈關(guān)注

非強(qiáng)烈關(guān)注

合計(jì)

丹東市

烏魯木齊市

合計(jì)

②判斷是否有90%的把握認(rèn)為強(qiáng)烈關(guān)注與網(wǎng)友所在的地區(qū)有關(guān)?

附:臨界值表及參考公式:

,.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點(diǎn).

(Ⅰ)求證:PD∥平面ACE;

(Ⅱ)求證:PD⊥平面PBC;

(Ⅲ)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形為邊長(zhǎng)為的正方形,△ABE和△BCF均為正三角形,在三棱錐中:

(I)證明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若點(diǎn)在棱上,滿足, ,點(diǎn)在棱上,且,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種類型的題目有,,,,5個(gè)選項(xiàng),其中有3個(gè)正確選項(xiàng),滿分5分.賦分標(biāo)準(zhǔn)為“選對(duì)1個(gè)得2分,選對(duì)2個(gè)得4分,選對(duì)3個(gè)得5分,每選錯(cuò)1個(gè)扣3分,最低得分為0分”在某校的一次考試中出現(xiàn)了一道這種類型的題目,已知此題的正確答案為,假定考生作答的答案中的選項(xiàng)個(gè)數(shù)不超過(guò)3個(gè).

(1)若甲同學(xué)無(wú)法判斷所有選項(xiàng),他決定在這5個(gè)選項(xiàng)中任選3個(gè)作為答案,求甲同學(xué)獲得0分的概率;

(2)若乙同學(xué)只能判斷選項(xiàng)是正確的,現(xiàn)在他有兩種選擇:一種是將AD作為答案,另一種是在這3個(gè)選項(xiàng)中任選一個(gè)與組成一個(gè)含有3個(gè)選項(xiàng)的答案,則乙同學(xué)的最佳選擇是哪一種,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案