【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點(diǎn).

(Ⅰ)求證:PD∥平面ACE;

(Ⅱ)求證:PD⊥平面PBC;

(Ⅲ)求三棱錐E-ABC的體積.

【答案】(I)見解析;(II)見解析;(III)

【解析】

(I)連結(jié),連結(jié),利用中位線可證明,即可說明平面;

(II)由平面平面,底面為矩形可得:,根據(jù)勾股定理可得:,由此證明平面;

(III)取的中點(diǎn),連結(jié),可證明平面,由于 中點(diǎn),則過點(diǎn)作平面的高等于,所以,即可求出三棱錐 的體積

(I)連結(jié),連結(jié).因?yàn)榈酌?/span>是矩形,

所以中點(diǎn).又因?yàn)?/span> 中點(diǎn),所以.因?yàn)?/span>平面

平面,所以平面

(II) 因?yàn)榈酌?/span>為矩形,所以

又因?yàn)槠矫?/span>平面平面,平面平面,

所以平面.因?yàn)?/span>平面,所以

因?yàn)?/span>,所以,即

因?yàn)?/span>,,平面,

所以平面

(III))取的中點(diǎn),連結(jié),因?yàn)?/span>,的中點(diǎn),所以,且,

因?yàn)槠矫?/span>平面平面,平面平面, 所以平面,因?yàn)?/span> 中點(diǎn),

所以

所以三棱錐C的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點(diǎn),且,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,,,底面,且,,的中點(diǎn).

(1)證明:面

(2)求夾角的余弦值;

(3)求面與面所成二面角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的體質(zhì)健康狀況,對(duì)高一、高二兩個(gè)年級(jí)的學(xué)生進(jìn)行了體質(zhì)測(cè)試.現(xiàn)從兩個(gè)年級(jí)學(xué)生中各隨機(jī)選取20人,將他們的測(cè)試數(shù)據(jù),用莖葉圖表示如圖:《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》的等級(jí)標(biāo)準(zhǔn)如表.規(guī)定:測(cè)試數(shù)據(jù)≥60,體質(zhì)健康為合格.

等級(jí)

優(yōu)秀

良好

及格

不及格

測(cè)試數(shù)據(jù)

(Ⅰ)從該校高二年級(jí)學(xué)生中隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生體質(zhì)健康合格的概率;

(Ⅱ)從兩個(gè)年級(jí)等級(jí)為優(yōu)秀的樣本中各隨機(jī)選取一名學(xué)生,求選取的兩名學(xué)生的測(cè)試數(shù)據(jù)平均數(shù)大于95的概率;

(Ⅲ)設(shè)該校高一學(xué)生測(cè)試數(shù)據(jù)的平均數(shù)和方差分別為,高二學(xué)生測(cè)試數(shù)據(jù)的平均數(shù)和方差分別為,試估計(jì)、的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購(gòu)買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會(huì)大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷售收入原材料費(fèi)用).

參考公式: .

參考數(shù)據(jù): , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓的一個(gè)頂點(diǎn),且橢圓N的離心率為.

1)求橢圓N的方程;

2)已知是橢圓N的左焦點(diǎn),過作兩條互相垂直的直線交橢圓N兩點(diǎn),交橢圓N兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)上的最小值為,若不等式有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(如圖(1))和女生身高情況的頻率分布直方圖(如圖(2)).已知圖(1)中身高在170175cm的男生有16名.

1)試問在抽取的學(xué)生中,男、女生各有多少名?

身高≥170cm

身高<170cm

總計(jì)

男生

女生

總計(jì)

2)根據(jù)頻率分布直方圖,完成下面的2×2列聯(lián)表,并判斷能有多大(百分?jǐn)?shù))的把握認(rèn)為身高與性別有關(guān)?

附:參考公式和臨界值表

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案