【題目】已知定義在R上的函數(shù)是奇函數(shù),函數(shù)的定義域?yàn)?/span>.
(1)求的值;
(2)若在上遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若函數(shù)在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】
試題分析:(1)因?yàn)楹瘮?shù)是R上的奇函數(shù),所以,求得;(2)根據(jù)定義法,設(shè) 時(shí),需滿足,這樣可求得實(shí)數(shù)的取值范圍;(3)將函數(shù)零點(diǎn)轉(zhuǎn)化為的實(shí)根,是方程的一個(gè)實(shí)根,所以需討論的實(shí)根情況,得到的取值范圍.
試題解析:(1) 函數(shù)是奇函數(shù)
∴ .
∴ 得.………………3分
(2)∵在上遞減
∴ 任給實(shí)數(shù) ,當(dāng) 時(shí)
∴
∴ ………………………………………………6分
(3)由(1)得
化簡(jiǎn)得. 或 .
若是方程的根,則,
此時(shí)方程的另一根為1,與在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn)不符.
函數(shù)在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn)等價(jià)于方程
(※)在區(qū)間上有且僅有一個(gè)非零的實(shí)根.
①當(dāng)時(shí),得.
若,則方程(※)的根為,符合題意;
若,則與(2)條件下矛盾,不符合題意.
.
② 當(dāng)時(shí),令
由 得.
綜上所述,所求實(shí)數(shù)的取值范圍是. ………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰直角三角形,其中, .點(diǎn)、分別是、
的中點(diǎn),現(xiàn)將△沿著邊折起到△位置, 使⊥,連結(jié)、.
(Ⅰ)求證:BC⊥PB
(Ⅱ)求PC與平面ABCD所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α、β是兩個(gè)平面,直線lα,lβ,若以①l⊥α;②l∥β;③α⊥β中兩個(gè)為條件,另一個(gè)為結(jié)論構(gòu)成三個(gè)命題,則其中正確的命題有 ( )
A. ①③②;①②③
B. ①③②;②③①
C. ①②③;②③①
D. ①③②;①②③;②③①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里裝有大小均勻的個(gè)小球,其中有紅色球個(gè),編號(hào)分別為;白色球個(gè), 編號(hào)分別為, 從盒子中任取個(gè)小球(假設(shè)取到任何—個(gè)小球的可能性相同).
(1)求取出的個(gè)小球中,含有編號(hào)為的小球的概率;
(2)在取出的個(gè)小球中, 小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓短軸的一個(gè)端點(diǎn)與其兩個(gè)焦點(diǎn)構(gòu)成面積為3的直角三角形.
(1)求橢圓的方程;
(2)過圓上任意一點(diǎn)作圓的切線, 與橢圓交于兩點(diǎn),以為直徑的圓是否過定點(diǎn),如過,求出該定點(diǎn);不過說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張?jiān)谔詫毦W(wǎng)上開一家商店,他以10元每條的價(jià)格購(gòu)進(jìn)某品牌積壓圍巾2000條.定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價(jià)格銷售,平均每日銷售量為10條;B商店以25元每條的價(jià)格銷售,平均每日銷售量為20條。假定這種圍巾的銷售量t(條)是售價(jià)x(元)()的一次函數(shù),且各個(gè)商店間的售價(jià)、銷售量等方面不會(huì)互相影響.
(1)試寫出圍巾銷售每日的毛利潤(rùn)y(元)關(guān)于售價(jià)x(元)()的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價(jià),使得每日的毛利潤(rùn)最高(每日的毛利潤(rùn)為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià));
(2)考慮到這批圍巾的管理、倉(cāng)儲(chǔ)等費(fèi)用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉(cāng)儲(chǔ)等費(fèi)用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價(jià),使這批圍巾的總利潤(rùn)最高(總利潤(rùn)=總毛利潤(rùn)-總管理、倉(cāng)儲(chǔ)等費(fèi)用)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積y最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)在高考前各做了5次立定跳遠(yuǎn)測(cè)試,測(cè)得甲的成績(jī)?nèi)缦?/span>(單位:米):2.20,2.30,2.30,2.40,2.30,若甲、乙兩人的平均成績(jī)相同,乙的成績(jī)的方差是0.005,那么甲、乙兩人成績(jī)較穩(wěn)定的是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com