雙曲線9x2-16y2=1的焦距是( 。
A、
4
3
B、
3
4
C、
6
5
D、
5
6
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先把雙曲線方程化為標(biāo)準(zhǔn)方程,然后求出c,從而得到焦距2c.
解答: 解:將雙曲線方程化為標(biāo)準(zhǔn)方程得
x2
1
9
-
y2
1
16
=1.
∴a2=
1
9
,b2=
1
16
,
c2=a2+b2=
25
144

∴c=
5
12
,2c=
5
6

故選D.
點評:先把雙曲線化為標(biāo)準(zhǔn)形式后再求解,能夠避免出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足:a1=
1
4
,an+bn=1,bn+1=
bn
(1-an)(1+an)

(Ⅰ)求b1,b2,b3,b4
(Ⅱ)設(shè)Cn=
1
bn-1
,求證數(shù)列{Cn}是等差數(shù)列,并求bn的通項公式;
(Ⅲ)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個正整數(shù)能表示為兩個連續(xù)奇數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”,則在區(qū)間[1,200]內(nèi)的所有“神秘數(shù)”之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若到點(1,0)和點(4,0)的距離之比為1:2,且到直線y=x+c的距離為1的點有且只有3個,則c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意函數(shù)f(x),x∈D,可按如圖構(gòu)造一個數(shù)列發(fā)生器,由數(shù)列發(fā)生器產(chǎn)生的數(shù)列記為{xn}.
(1)若定義函數(shù)f(x)=
2x-1
x+1
,且輸入x0=2,求輸出的數(shù)列{xn}的所有項;
(2)若定義函數(shù)f(x)=x+3,且輸入x0=-1,設(shè)Sn是數(shù)列{xn}的前n項和,對于給定的n,請你給出一個D,并求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3cos(3x-
π
4
)
的最大值是( 。
A、-1B、-3C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|sinx|
x
,若k>0時,方程f(x)=k有且僅有兩個不同的實數(shù)解x1、x2(x1<x2),則( 。
A、sinx1=-x1•cosx2
B、sinx1=x1•cosx2
C、cosx2=-x2•sinx1
D、cosx2=x2•sinx1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中為偶函數(shù)的是( 。
A、y=3x
B、y=log3x
C、y=x2+tanx
D、y=1+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:x2-6x-27≤0,q:|x-1|≤m(m>0),若q是p的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案