3.實數(shù)x,y,a,b滿足xy=2,a+2b=0,則(x-a)2+(y-b)2的最小值為$\frac{16}{5}$.

分析 化曲線xy=2為y=$\frac{2}{x}$,求其導(dǎo)函數(shù),進一步求出與直線x+2y=0平行且與曲線相切的直線方程,再由兩平行線間的距離公式求解.

解答 解:由xy=2,得y=$\frac{2}{x}$,
則y′=$-\frac{2}{{x}^{2}}$,設(shè)與直線x+2y=0平行的直線與曲線y=$\frac{2}{x}$的切點為(${x}_{0},\frac{2}{{x}_{0}}$),
則$y′{|}_{x={x}_{0}}=-\frac{2}{{{x}_{0}}^{2}}$,
由$-\frac{2}{{{x}_{0}}^{2}}=-\frac{1}{2}$,得x0=±2.
當(dāng)x0=2時,切線方程為y-1=$-\frac{1}{2}$(x-2),即x+2y-4=0.
∴直線x+2y=0與直線x+2y-4=0的距離d=$\frac{|-4|}{\sqrt{5}}$=$\frac{4}{\sqrt{5}}$.
∴(x-a)2+(y-b)2的最小值為$\frac{16}{5}$;
同理求得當(dāng)x0=-2時(x-a)2+(y-b)2的最小值為$\frac{16}{5}$.
故答案為:$\frac{16}{5}$.

點評 本題考查兩曲線間距離的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了利用導(dǎo)數(shù)求過曲線上某點處的切線方程,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.水車在古代是進行灌溉引水的工具,是人類的一項古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個半徑為R的水車,一個水斗從點A(3$\sqrt{3}$,-3)出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),且旋轉(zhuǎn)一周用時60秒.經(jīng)過t秒后,水斗旋轉(zhuǎn)到P點,設(shè)P的坐標(biāo)為(x,y),其縱坐標(biāo)滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<$\frac{π}{2}}$).則下列敘述錯誤的是( 。
A.$R=6,ω=\frac{π}{30},φ=-\frac{π}{6}$
B.當(dāng)t∈[35,55]時,點P到x軸的距離的最大值為6
C.當(dāng)t∈[10,25]時,函數(shù)y=f(t)單調(diào)遞減
D.當(dāng)t=20時,$|{PA}|=6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=(x-a)2+(ln x2-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤b成立,則實數(shù)b的最小值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=sin2x的圖象向右平移ϕ$({0<ϕ<\frac{π}{2}})$個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[{0,\frac{π}{3}}]$上單調(diào)遞增,且函數(shù)g(x)的最大負(fù)零點在區(qū)間$({-\frac{π}{3},-\frac{π}{12}})$內(nèi),則ϕ的取值范圍是(  )
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{6},\frac{5π}{12}})$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)z=|($\sqrt{3}$-i)i|+i2017(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示的幾何體是由棱臺ABC-A1B1C1和棱錐D-AA1C1C拼接而成的組合體,其底面四邊形ABCD是邊長為2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求證:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$α∈({0,\frac{π}{2}})$,且$2cos2α=cos({\frac{π}{4}-α})$,則sin2α的值為( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{7}{8}$D.$-\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x>1},B={y|y=x2,x∈R},則A∩B=( 。
A.[0,+∞)B.(1,+∞)C.[0,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“a>0”是“$a+\frac{2}{a}≥2\sqrt{2}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案