11.在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),A($\sqrt{3}$,1),將OA繞點(diǎn)O逆時針旋轉(zhuǎn)90°到OB,則點(diǎn)B的坐標(biāo)為(-1,$\sqrt{3}$).

分析 首先根據(jù)旋轉(zhuǎn)的性質(zhì)作圖,利用圖象則可求得點(diǎn)B的坐標(biāo).

解答 解:過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)B作BC⊥y軸于點(diǎn)F,
∵點(diǎn)A的坐標(biāo)為($\sqrt{3}$,1),將OA繞原點(diǎn)O逆時針旋轉(zhuǎn)90°到OB的位置,
∴BC=$\sqrt{3}$,CO=1,
∴點(diǎn)B的坐標(biāo)為:(-1,$\sqrt{3}$),
故答案為:(-1,$\sqrt{3}$).

點(diǎn)評 此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用得出BC,BF的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)F(-c,0)和虛軸端點(diǎn)E的直線交雙曲線右支于點(diǎn)P,若E為線段EP的中點(diǎn),則該雙曲線的離心率為( 。
A.$\sqrt{5}+1$B.$\sqrt{5}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|0<2x+a≤3},B={x|-$\frac{1}{2}$<x<2}.
(1)當(dāng)a=1時,求(∁RB)∪A;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a=log37,b=21.1,c=0.52.1,則(  )
A.b<a<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知角α是第四象限角,角α的終邊經(jīng)過點(diǎn)P(4,y),且sinα=$\frac{y}{5}$,則tanα的值是(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題:“存在一個橢圓,其離心率e<1”的否定是( 。
A.任意橢圓的離心率e≥1B.存在一個橢圓,其離心率e≥1
C.任意橢圓的離心率e>1D.存在一個橢圓,其離心率e>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax3-3x2+1,a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若方程f(x)=-3x2-3x+2恰有一個實數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.球面上有3個點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長的$\frac{1}{6}$,經(jīng)過這點(diǎn)的小圓周長為4π,求這個球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.甲、乙、丙、丁四個小朋友正在教室里玩耍,忽聽“砰”的一聲,講臺上的花盆被打破了,甲說:“是乙不小心闖的禍”乙說:“是丙闖的禍”,丙說:“乙說的不是實話.”丁說:“反正不是我闖的禍.”如果剛才四個小朋友中只有一個人說了實話,那么這個小朋友是丙.

查看答案和解析>>

同步練習(xí)冊答案