分析 因為正三角形ABC的外徑r=2,故可以得到高,D是BC的中點.在△OBC中,又可以得到角以及邊與R的關(guān)系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.
解答 解:因為正三角形ABC的外徑r=2,故高AD=$\frac{3}{2}$r=3,D是BC的中點.
在△OBC中,BO=CO=R,∠BOC=$\frac{π}{3}$,所以BC=BO=R,BD=$\frac{1}{2}$BC=$\frac{1}{2}$R.
在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=$\frac{1}{4}$R2+9,所
以R=2$\sqrt{3}$.
點評 本題考查學(xué)生的空間想象能力,以及對球的性質(zhì)認(rèn)識及利用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a+b≠1,則a2+b2<$\frac{1}{2}$ | B. | 若a+b=1,則a2+b2<$\frac{1}{2}$ | ||
C. | 若a2+b2<$\frac{1}{2}$,則a+b≠1 | D. | 若a2+b2≥$\frac{1}{2}$,則a+b=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-6]∪[2,+∞) | B. | (-∞,-4)∪(4,+∞) | C. | [2,+∞) | D. | [-6,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com