18.已知等腰直角三角形的斜邊的長為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.2π????D.4$\sqrt{2}$π

分析 幾何體為兩個同底等高的圓錐的組合體.

解答 解:等腰直角三角形的直角邊為$\sqrt{2}$,斜邊的高為1.
∴旋轉(zhuǎn)后的幾何體為兩個大小相等的圓錐的組合體.圓錐的底面半徑為1,高為1.
∴幾何體的體積V=2×$\frac{1}{3}π×{1}^{2}×1$=$\frac{2π}{3}$.
故選:A.

點(diǎn)評 本題考查了旋轉(zhuǎn)體的結(jié)構(gòu)特征和體積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出下列命題:
①已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3;
②f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則$f({{2^{\frac{1}{8}}}})>f({{{log}_2}({\frac{1}{8}})})>f{({{{({\frac{1}{8}})}^2}})_{\;}}$;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
④已知a>0,b>0,函數(shù)y=2aex+b的圖象過點(diǎn)(0,1),則$\frac{1}{a}+\frac{1}$的最小值是$4\sqrt{2}$.
其中正確命題的序號是①② (把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知角α的終邊落在直線y=-2x上,則tanα=-2,$cos(2α+\frac{3}{2}π)$=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知在空間直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,2,1),點(diǎn)B的坐標(biāo)為(-2,0,3),則線段AB的中點(diǎn)坐標(biāo)為( 。
A.(-1,1,2)B.(-2,2,4)C.(-1,-1,1)D.(1,-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=${∫}_{0}^{π}$$\sqrt{2}$cos(x-$\frac{π}{4}$)dx,則二項式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)4中展開式中含x項的系數(shù)是( 。
A.-32B.32C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l經(jīng)過點(diǎn)M0(1,5),傾斜角為$\frac{π}{3}$,且交直線x-y-2=0于M點(diǎn),則|MM0|=6$\sqrt{3}$+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,0),直線x+$\sqrt{2}$y=0與橢圓C的一個交點(diǎn)為(-$\sqrt{2}$,1),點(diǎn)A是橢圓C上的任意一點(diǎn),延長AF1交橢圓C于點(diǎn)B,連接BF2,AF2
(1)求橢圓C的方程;
(2)求△ABF2的內(nèi)切圓的最大周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an},a1=1,an+1=2an+(-1)n(n∈N*).
(1)是否存在實數(shù)λ,使得數(shù)列{a2n-1+λ}成等比數(shù)列,若存在,求出λ的值,若不存在,請說明理由;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.將下列各式化為Asin(α+φ)(A>0,0<φ<2π)的形式:
(1)sinα+$\frac{\sqrt{3}}{3}$coosα;
(2)2sinα-2cosα;
(3)-$\sqrt{3}$sinα-3cosα;
(4)$\sqrt{6}$cosα-$\sqrt{2}$sinα

查看答案和解析>>

同步練習(xí)冊答案