+=1上有兩個(gè)動(dòng)點(diǎn)P、Q,E(3,0),EP⊥EQ,則的最小值為   
【答案】分析:根據(jù)EP⊥EQ,和向量的數(shù)量積的幾何意義,得∴==EP2,設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式求出EP2,根據(jù)點(diǎn)P在橢圓上,代入消去y,轉(zhuǎn)化為二次函數(shù)求最值問題,即可解得結(jié)果.
解答:解:設(shè)P(x,y),則 ,即
∵EP⊥EQ,
==EP2,
而EP2=(x-3)2+y2=,
∵-6≤x≤6
∴當(dāng)x=4時(shí),EP2=(x-3)2+y2=有最小值6,
故答案為:6.
點(diǎn)評:本題考查了向量在幾何中的應(yīng)用,以及向量數(shù)量積的幾何意義,和橢圓的有界性,二次函數(shù)求最值等基礎(chǔ)知識,注意橢圓的有界性,考查學(xué)生靈活應(yīng)用知識分析解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

x2
36
+
y2
9
=1上有兩個(gè)動(dòng)點(diǎn)P、Q,E(3,0),EP⊥EQ,則
EP
QP
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2
36
+
y2
9
=1上有兩個(gè)動(dòng)點(diǎn)P、Q,E(3,0),EP⊥EQ,則
.
EP
.
QP
的最小值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

橢圓+=1上有兩個(gè)動(dòng)點(diǎn)P、Q,E(3,0),EPEQ,·的最小值為(  )

(A)6 (B)3- (C)9 (D)12-6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

x2
36
+
y2
9
=1上有兩個(gè)動(dòng)點(diǎn)P、Q,E(3,0),EP⊥EQ,則
EP
QP
的最小值為( 。
A.6B.3-
3
C.9D.12-6
3

查看答案和解析>>

同步練習(xí)冊答案