某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個學(xué)生必須選修,且只能從中選一門.該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同.
(1)求3個學(xué)生選擇了3門不同的選修課的概率;
(2)求恰有2門選修課這3個學(xué)生都沒有選擇的概率;
(3)設(shè)隨機變量X為甲、乙、丙這三個學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求X的分布列.
(1)(2)(3)X的概率分布表為:
X
0
1
2
3
P




(1)3個學(xué)生選擇了3門不同的選修課的概率:P1.
(2)恰有2門選修課這3個學(xué)生都沒有選擇的概率:P2.
(3)X=0,1,2,3,則有P(ξ=0)=
P(X=1)=;P(X=2)=;
P(X=3)=.
∴X的概率分布表為:
X
0
1
2
3
P




練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在二項式(x-
1
x2
6的展開式中,常數(shù)項是( 。
A.-10B.-15C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在(x+y)n的展開式中,若第九項系數(shù)最大,則n的值可能等于( 。
A.14,15B.15,16C.16,17D.14,15,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某電視臺的一個智力游戲節(jié)目中,有一道將中國四大名著《三國演義》、《水滸傳》、《西游記》、《紅樓夢》與它們的作者連線的題目,每本名著只能與一名作者連線,每名作者也只能與一本名著連線,每連對一個得2分,連錯得-1分,某觀眾只知道《三國演義》的作者是羅貫中,其他不知道隨意連線,將他的得分記作ξ.
(1)求該觀眾得分ξ為負數(shù)的概率;
(2)求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射擊小組有甲、乙兩名射手,甲的命中率為P1,乙的命中率為P2,在射擊比賽活動中每人射擊兩發(fā)子彈則完成一次檢測,在一次檢測中,若兩人命中數(shù)相等且都不少于一發(fā),則稱該射擊小組為“先進和諧組”.
(1)若P2,求該小組在一次檢測中榮獲“先進和諧組”的概率;
(2)計劃在2013年每月進行1次檢測,設(shè)這12次檢測中該小組獲得“先進和諧組”的次數(shù)為ξ,如果E(ξ)≥5,求P2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

黃山旅游公司為了體現(xiàn)尊師重教,在每年暑假期間對來黃山旅游的全國各地教師和學(xué)生,憑教師證和學(xué)生證實行購買門票優(yōu)惠.某旅游公司組織有22名游客的旅游團到黃山旅游,其中有14名教師和8名學(xué)生.但是只有10名教師帶了教師證,6名學(xué)生帶了學(xué)生證.
(1)在該旅游團中隨機采訪3名游客,求恰有1人持有教師證且持有學(xué)生證者最多1人的概率;
(2)在該團中隨機采訪3名學(xué)生,設(shè)其中持有學(xué)生證的人數(shù)為隨機變量ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若隨機變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)生參加某高校的自主招生考試,須依次參加ABCD,E五項考試,如果前四項中有兩項不合格或第五項不合格,則該考生就被淘汰,考試即結(jié)束;考生未被淘汰時,一定繼續(xù)參加后面的考試.已知每一項測試都是相互獨立的,該生參加AB,C,D四項考試不合格的概率均為,參加第五項不合格的概率為.
(1)求該生被錄取的概率;
(2)記該生參加考試的項數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市舉行一次數(shù)學(xué)新課程骨干培訓(xùn)活動,共邀請15名使用不同版本教材的數(shù)學(xué)教師,具體情況數(shù)據(jù)如下表所示:
版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6

4

 
現(xiàn)從這15名教師中隨機選出2名,則2人恰好是教不同版本的女教師的概率是.且.
(1)求實數(shù),的值
(2)培訓(xùn)活動現(xiàn)隨機選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案