6.設(shè)i為虛數(shù)單位,復(fù)數(shù)$\frac{2i}{1+i}$-2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出復(fù)數(shù)所對(duì)應(yīng)點(diǎn)的坐標(biāo)得答案.

解答 解:∵$\frac{2i}{1+i}$-2=$\frac{2i(1-i)}{(1+i)(1-i)}-2=\frac{2+2i}{2}-2=-1+i$,
∴復(fù)數(shù)$\frac{2i}{1+i}$-2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,1),位于第二象限.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求${∫}_{-1}^{1}$f(x)dx,其中f(x)=$\left\{\begin{array}{l}{2x-1,-1≤x<0}\\{{e}^{-x},0≤x≤1}\end{array}\right.$且${∫}_{-1}^{0}$(2x-1)dx=-2,${∫}_{0}^{1}$e-xdx=1-e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一同學(xué)在電腦中打出如下若干個(gè)圓(圖中●表示實(shí)心圓,○表示空心圓):○●○○●○○○●○○○○●○○○○○●…若將此若干個(gè)圓依次復(fù)制得到一系列圓,那么在前2016個(gè)圓中有62個(gè)實(shí)心圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線${l_1}:x-y-2\sqrt{2}=0$相切.
(1)求圓O的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A為圓O上一動(dòng)點(diǎn),AN⊥y軸于N,若點(diǎn)Q滿足$\overrightarrow{OQ}=m\overrightarrow{OA}+(1-m)\overrightarrow{ON}$,(其中m為非零常數(shù)),試求點(diǎn)Q的軌跡方程C2
(3)在(2)的結(jié)論下,當(dāng)$m=\frac{{\sqrt{3}}}{2}$時(shí),得到動(dòng)點(diǎn)Q的軌跡曲線C,與圓x2+(y+1)2=1相切的直線l:y=k(x+t),kt≠0交曲線C于E,F(xiàn),若曲線C上一點(diǎn)P滿足$\overrightarrow{OE}+\overrightarrow{OF}=λ\overrightarrow{OP}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等比數(shù)列{an}中,a1=1,a8=4,函數(shù)f(x)=x(x-a1)(x-a2)…(x-a8),f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)等于( 。
A.0B.26C.28D.212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實(shí)數(shù)a,b滿足:2b2-a2=2,則|a-3b|的最小值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)二次函數(shù)f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3時(shí),f(x)≤0恒成立,f(x)是區(qū)間[2,+∞)上的增函數(shù).函數(shù)f(x)的解析式是f(x)=x2-4x+3;若|f(m)|=|f(n)|,且m<n<2,u=m+n,u的取值范圍是2<u<4-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“m=2”是“l(fā)oga2+log2a≥m(a>1)恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知{an}是等比數(shù)列,若a1,a5是方程x2-px+4=0(p<0)的兩個(gè)根,則a3=-2.

查看答案和解析>>

同步練習(xí)冊答案