已知橢圓的兩個(gè)焦點(diǎn)分別為F1(0,-8),F(xiàn)2(0,8),且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為20,則此橢圓的方程為______.
∵橢圓的兩個(gè)焦點(diǎn)分別為F1(0,-8),F(xiàn)2(0,8),
∴該橢圓的焦點(diǎn)坐標(biāo)在y軸上,且c=8,
∵橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為20,
∴2a=20,即a=10,
∴b2=102-82=36,
∴此橢圓的方程為
x2
100
+
y2
36
=1.
故答案為:
x2
100
+
y2
36
=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,左焦點(diǎn)為E,右焦點(diǎn)為F,上頂點(diǎn)為B,若△BEF為等邊三角形,則此橢圓的離心率為( 。
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P在拋物線y2=4x上移動(dòng),F(xiàn)為拋物線的焦點(diǎn),則|PF|+|PA|的最小值為(  )
A.3B.4C.5D.
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
9
+
y2
5
=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為2π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓
x2
4
+
y2
3
=1
的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若
PF1
PF2
=
5
2
,則|
PF1
|•|
PF2
|=(  )
A.2B.3C.
7
2
D.
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),P為直線x=-
3
2
a
上一點(diǎn),△F1PF2是底角為30°的等腰三角形,則E的離心率為( 。
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓x2+6y2=36的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn)且PF1⊥PF2,則△F1PF2的面積是(  )
A.36B.12C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1、F2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的兩焦點(diǎn),過點(diǎn)F2作AB⊥x軸交橢圓于A、B兩點(diǎn),若△F1AB為等腰直角三角形,且∠AF1B=90°,則橢圓的離心率是(  )
A.
2
-1
B.
2
2
C.3-2
2
D.2-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
5
+y2=1
的左右焦點(diǎn)為F1,F(xiàn)2,設(shè)P(x0,y0)為橢圓上一點(diǎn),當(dāng)∠F1PF2為直角時(shí),點(diǎn)P的橫坐標(biāo)x0=( 。
A.±
15
4
B.±
15
2
C.±
1
2
D.±2

查看答案和解析>>

同步練習(xí)冊答案