已知橢圓9x2+2y2=18上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且
PM
=2
MQ
,點(diǎn)M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足
FG
=
1
2
FH
,求直線l的方程.
(I)設(shè)點(diǎn)P(x0,y0)是橢圓上一點(diǎn),則Q(x0,0),M(x,y)
由已知
PM
=2
MQ
得:x0=x,y0=3y代入橢圓方程得9x2+18y2=18,
即x2+2y2=2為曲線E的方程.
(II)設(shè)G(x1,y1),H(x2,y2),
當(dāng)直線GH斜率存在時(shí),設(shè)直線GH的斜率為k
則直線GH的方程為:y=kx+2,
代入x2+2y2=2,得:(
1
2
+k2)x2+4kx+3=0,
由△>0,解得:k2
3
2
x1+x2=
-4k
1
2
+k2
,x1x2=
3
1
2
+k2
,
FG
=(x1,y1-2)
,
FH
=(x2,y2-2)
,又有
FG
=
1
2
FH

x1=
1
2
x2

.∴
x1+x2=
-4k
1
2
+k2
x1x2=
3
1
2
+k2
x1=
1
2
x2

化為(
-8k
3(1+2k2)
)2=
3
1+2k2
,即10k2=27.
解得:k2=
27
10
3
2
,
k=±
3
30
10
,
∴直線l的方程為:y=±
3
30
10
x+2,
當(dāng)直線GH斜率不存在時(shí),直線的l方程為x=0,
此時(shí)
FG
=
1
3
FH
FG
=
1
2
FH
矛盾不合題意.
∴所求直線l的方程為:y=±
3
30
10
x+2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•青島一模)已知橢圓9x2+2y2=18上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且
PM
=2
MQ
,點(diǎn)M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足
FG
=
1
2
FH
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省青島市2007年高三教學(xué)第一次統(tǒng)一質(zhì)量檢測(cè)數(shù)學(xué)文 題型:044

已知橢圓9x2+2y2=18上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且,點(diǎn)M的軌跡為曲線E.

(Ⅰ)求曲線E的方程;

(Ⅱ)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省青島市2007年高三教學(xué)第一次統(tǒng)一質(zhì)量檢測(cè)數(shù)學(xué)試題(文) 題型:044

已知橢圓9x2+2y2=18上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且,點(diǎn)M的軌跡為曲線E.

(Ⅰ)求曲線E的方程;

(Ⅱ)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年山東省青島市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓9x2+2y2=18上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且,點(diǎn)M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案