精英家教網 > 高中數學 > 題目詳情

【題目】某射擊游戲規(guī)定:每位選手最多射擊3次;射擊過程中若擊中目標,方可進行下一次射擊,否則停止射擊;同時規(guī)定第i(i=1,2,3)次射擊時擊中目標得4﹣i分,否則該次射擊得0分.已知選手甲每次射擊擊中目標的概率為0.8,且其各次射擊結果互不影響.
(Ⅰ)求甲恰好射擊兩次的概率;
(Ⅱ)設該選手甲停止射擊時的得分總和為ξ,求隨機變量ξ的分布列及數學期望.

【答案】解:(Ⅰ)設選手甲第i次擊中目標的事件為Ai(i=1,2,3),

依題可知:Ai與Aj(i,j=1,2,3,i≠j)相互獨立
所求為:
(Ⅱ)ξ可能取的值為0,3,5,6.         
ξ的分布列為:

ξ

0

3

5

6

P

0.2

0.16

0.128

0.512

…(10分)(表中的每一個概率值各占1分)
∴Eξ=0×0.2+3×0.16+5×0.128+6×0.512=4.192.
【解析】(Ⅰ)甲恰好射擊兩次說明第一次射中,第二次未射中,設選手甲第i次擊中目標的事件為Ai(i=1,2,3),則 , 而Ai與Aj(i,j=1,2,3,i≠j)相互獨立,從而求出所求;
(II)ξ可能取的值為0,3,5,6,然后求出相應的概率,得到ξ的分布列,最后根據離散型隨機變量的期望公式解之即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣mx(m∈R). (Ⅰ)當m=0時,討論函數f(x)的單調性;
(Ⅱ)當b>a>0時,總有 >1成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三個內角的度數可以構成等差數列”是“中有一個內角為”的(  )

A. 充分不必要條件B. 必要不充分條件

C. 充要條件D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)當時,求函數的圖像在點處的切線方程;

(Ⅱ)求函數在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為緩解交通運行壓力,某市公交系統(tǒng)實施疏堵工程.現調取某路公交車早高峰時段全程運輸時間(單位:分鐘)的數據,從疏堵工程完成前的數據中隨機抽取5個數據,記為組;從疏堵工程完成后的數據中隨機抽取5個數據,記為組.

組:

組:

(Ⅰ)該路公交車全程運輸時間不超過分鐘,稱為“正點運行”.從,兩組數據中各隨機抽取一個數據,求這兩個數據對應的兩次運行中至少有一次“正點運行”的概率;

(Ⅱ)試比較,兩組數據方差的大。ú灰笥嬎悖,并說明其實際意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=2sin(2x﹣)的圖象向左平移個單位,再向上平移1個單位,得到函數y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,則b的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一個底面水平放置的倒圓錐形容器,它的軸截面是正三角形,容器內有一定量的水,水深為. 若在容器內放入一個半徑為 1 的鐵球后,水面所在的平面恰好經過鐵球的球心(水沒有溢出),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高一舉行了一次數學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為)作為樣本(樣本容量為)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]頻數分別為8,2.

(1)求樣本容量和頻率分布直方圖中的的值;

(2)估計本次競賽學生成績的中位數;

(3)在選取的樣本中,從競賽成績在分以上(含分)的學生中隨機抽取名學生,求所抽取的名學生中至少有一人得分在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某儀器經過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調試,經調試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產成本

檢驗費/次

調試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產成本檢驗費調試費);

(Ⅲ)假設每臺儀器是否合格相互獨立,記為生產兩臺儀器所獲得的利潤,求的分布列和數學期望.

查看答案和解析>>

同步練習冊答案