【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為
(1)計(jì)算f(1),f(2),f(3)的值;
(2)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

【答案】
(1)解:由已知 , ;
(2)解:由(1)知f(1)>1,f(2)>1;當(dāng)n≥3時(shí),猜想:f(n)<1.

下面用數(shù)學(xué)歸納法證明:

1)由(1)當(dāng)n=3時(shí),f(n)<1;

2)假設(shè)n=k(k≥3)時(shí),f(n)<1,即 ,那么 = = =

所以當(dāng)n=k+1時(shí),f(n)<1也成立.由(1)和(2)知,當(dāng)n≥3時(shí),f(n)<1.

所以當(dāng)n=1,和n=2時(shí),f(n)>1;當(dāng)n≥3時(shí),f(n)<1.


【解析】(1)此問根據(jù)通項(xiàng)公式計(jì)算出前n項(xiàng)的和.當(dāng)n=1時(shí),f(1)=s2;當(dāng)n=2時(shí),f(2)=s4﹣s1=a2+a3;當(dāng)n=3時(shí),f(3)=s6﹣s2 . (2)當(dāng)n=1時(shí), ≥1.當(dāng)n≥2時(shí),f(n)中沒有a1 , 因此都小于1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a( x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠,則實(shí)數(shù)c的取值范圍為(
A.(0,4)
B.[0,4]
C.(0,4]
D.[0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,拋物線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點(diǎn), ,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶準(zhǔn)備建一個(gè)水平放置的直四棱柱形儲(chǔ)水器(如圖),其中直四棱柱的高兩底面是高為,面積為的等腰梯形,且,若儲(chǔ)水窖頂蓋每平方米的造價(jià)為100元,側(cè)面每平方米的造價(jià)為400元,底部每平方米的造價(jià)為500

(1)試將儲(chǔ)水窖的造價(jià)表示為的函數(shù);

(2)該農(nóng)戶如何設(shè)計(jì)儲(chǔ)水窖,才能使得儲(chǔ)水窖的造價(jià)最低,最低造價(jià)是多少元?(取).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),設(shè)函數(shù)f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)要在邊長(zhǎng)為100m的正方形ABCD內(nèi)建一個(gè)交通“環(huán)島”.以正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為xm(x不小于9)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為 m的圓形草地.為了保證道路暢通,島口寬不小于60m,繞島行駛的路寬均小于10m.

(1)求x的取值范圍;(運(yùn)算中 取1.4)
(2)若中間草地的造價(jià)為a元/m2 , 四個(gè)花壇的造價(jià)為 元/m2 , 其余區(qū)域的造價(jià)為 元/m2 , 當(dāng)x取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a2=5,a5+a7=26,數(shù)列{an}的前n項(xiàng)和為Sn
(1)求an及Sn;
(2)設(shè){bn﹣an}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是邊長(zhǎng)為1的正六邊形ABCDEF的邊上的一個(gè)動(dòng)點(diǎn),設(shè) =x +y ,則x+y的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=f(x)的圖象過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)f′(x)=6x﹣2,數(shù)列{an}前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,Tn是數(shù)列{bn}的前n項(xiàng)和,求當(dāng) 對(duì)所有n∈N*都成立m取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案