函數(shù)的最小正周期為,其圖像經(jīng)過點(diǎn)
(1)求的解析式;
(2)若且為銳角,求的值.
(1);(2).
解析試題分析:本題考查三角函數(shù)的性質(zhì),主要考查三角函數(shù)的周期、兩角和與差的三角函數(shù)、倍角公式等基礎(chǔ)知識(shí),考查運(yùn)算能力,考查數(shù)型結(jié)合思想.第一問,先利用周期求出,再利用點(diǎn)的坐標(biāo)求出,注意已知條件中的取值范圍;第二問,先利用兩角和與差的三角函數(shù)公式展開化簡表達(dá)式,得到,然后求,但是注意的正負(fù)符號(hào).
試題解析: (1)∵的最小正周期為,,∴,,
又的圖象經(jīng)過點(diǎn)∴,即,
又∴∴
(2),∴
整理得即,又為銳角, ∴.
考點(diǎn):1.三角函數(shù)的周期;2.三角函數(shù)的對(duì)稱軸;3.三角函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,,點(diǎn)A、B為函數(shù)的相鄰兩個(gè)零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路,另一側(cè)修建一條觀光大道,它的前一段是以為頂點(diǎn),軸為對(duì)稱軸,開口向右的拋物線的一部分,后一段是函數(shù),時(shí)的圖象,圖象的最高點(diǎn)為,,垂足為.
(1)求函數(shù)的解析式;
(2)若在湖泊內(nèi)修建如圖所示的矩形水上樂園,問:點(diǎn)落在曲線上何處時(shí),水上樂園的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)的圖像關(guān)于直線對(duì)稱,求的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)寫出函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)f(x)的最大值與最小值的和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,一個(gè)半圓和長方形組成的鐵皮,長方形的邊為半圓的直徑,為半圓的圓心,,,現(xiàn)要將此鐵皮剪出一個(gè)等腰三角形,其底邊.
(1)設(shè),求三角形鐵皮的面積;
(2)求剪下的鐵皮三角形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
①;
②;
③;
④;
⑤.
(1)從上述五個(gè)式子中選擇一個(gè),求出常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個(gè)三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位有、、三個(gè)工作點(diǎn),需要建立一個(gè)公共無線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個(gè)工作點(diǎn)的距離相等.已知這三個(gè)工作點(diǎn)之間的距離分別為,,.假定、、、四點(diǎn)在同一平面上.
(1)求的大;
(2)求點(diǎn)到直線的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com