(本小題滿分10分)選修4-1:幾何證明選講
如圖所示,已知與⊙相切,為切點,為割線,
、相交于點,上一點,且·.

(1)求證:
(2)求證:·=·.

見解析。

解析試題分析:證明:(1)∵,∴。
是公共角,∴相似于,
,  …………………… 5分
(2),相似,
··。
相交于點,·
··.     ……………………… 10分
考點:本題主要考查平面幾何選講,三角形及圓的問題。
點評:本題以直線與圓的位置關系為載體,全面考查了平面幾何選講問題,中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.求證:(1)△ABC≌△DCB   (2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉,若點B,P在直線a的異側,BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.

(1)延長MP交CN于點E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點A旋轉到圖3的位置時,點B,P在直線a的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點c為o 上不同于A、B的一點,AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結BD、CD.

(I )求證:BD平分
(II)求證:AH.BH=AE.HC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講
如圖,四邊形是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半圓交于點,延長

(1)求證:的中點;
(2)求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,AB、CD是圓的兩條平行弦,BE//AC,BE交CD于E、交圓于F,過A點的切線交DC的延長線于P,PC=ED=1,PA=2.
(I)求AC的長;
(II)求證:BE=EF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講
如圖,已知,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC。求證:AM=7BM。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(12分)
如圖,△ABC內接于⊙O,過點A的直線交⊙O于點P,交BC的延長線于點D,
且AB2=AP·AD

(1)求證:AB=AC;
(2)如果∠ABC=60°,⊙O的半徑為1,且P為弧AC的中點,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

參數(shù)方程 (為參數(shù))化為普通方程是(   )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案