分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)得到-ex+ax2-(2a-1)x-1<0,令g(a)=(x2-2x)a-ex+x-1,a∈[-2,0],g(a)是關(guān)于a的一次函數(shù),通過(guò)討論x的范圍求出g(a)的最大值,證明即可.
解答 解:(1)a=-$\frac{1}{2}$時(shí),f(x)=(x-2)ex-$\frac{1}{2}$x2+x,
f′(x)=(x-1)ex-x+1=(x-1)(ex-1),
令f′(x)>0,解得:x>1或x<0,令f′(x)<0,解得:0<x<1,
∴f(x)在(-∞,0)遞增,在(0,1)遞減,在(1,+∞)遞增;
(2)證明:f′(x)=(x-1)ex+2ax+1,
f(x)<f′(x)即-ex+ax2-(2a-1)x-1<0,
令g(a)=(x2-2x)a-ex+x-1,a∈[-2,0],g(a)是關(guān)于a的一次函數(shù),
①x2-2x>0即x>2或x<0時(shí),g(a)在[-2,0]遞增,
g(a)的最大值是g(0)=-2<0,成立,
②x2-2x=0即x=0或2時(shí),g(a)=-2或g(a)=1-e2<0,成立,
③x2-x<0即0<x<2時(shí),g(a)在(0,2)遞減,
g(a)的最大值是g(0)=-ex+x-1,(0<x<2),
令h(x)=-ex+x-1,h′(x)=-ex+1<0,
∴h(x)<h(0)=-2<0,成立,
綜上,當(dāng)a∈[-2,0]時(shí),f(x)<f′(x)總成立.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
手機(jī)系統(tǒng) | 一 | 二 | 三 | 四 | 五 |
安卓系統(tǒng)(元) | 2 | 5 | 3 | 20 | 9 |
IOS系統(tǒng)(元) | 4 | 3 | 18 | 9 | 7 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com