【題目】(2017·黃岡質檢)設等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn.若對任意的n∈N*,有S2n<3Sn,則q的取值范圍是( )
A. (0,1] B. (0,2)
C. [1,2) D. (0, )
科目:高中數(shù)學 來源: 題型:
【題目】2017年,世界乒乓球錦標賽在德國的杜賽爾多夫舉行.整個比賽精彩紛呈,參賽選手展現(xiàn)出很高的競技水平,為觀眾奉獻了多場精彩對決.圖1(扇形圖)和表1是其中一場關鍵比賽的部分數(shù)據(jù)統(tǒng)計.兩位選手在此次比賽中擊球所使用的各項技術的比例統(tǒng)計如圖1.在乒乓球比賽中,接發(fā)球技術是指回接對方發(fā)球時使用的各種方法.選手乙在比賽中的接發(fā)球技術統(tǒng)計如表1,其中的前4項技術統(tǒng)稱反手技術,后3項技術統(tǒng)稱為正手技術.
圖1
選手乙的接發(fā)球技術統(tǒng)計表
技術 | 反手擰球 | 反手搓球 | 反手拉球 | 反手撥球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次數(shù) | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)觀察圖1,在兩位選手共同使用的8項技術中,差異最為顯著的是哪兩項技術?
(Ⅱ)乒乓球接發(fā)球技術中的拉球技術包括正手拉球和反手拉球.從表1統(tǒng)計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果僅從表1中選手乙接發(fā)球得分率的穩(wěn)定性來看(不考慮使用次數(shù)),你認為選手乙的反手技術更穩(wěn)定還是正手技術更穩(wěn)定?(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)當時,求證:函數(shù)有且僅有一個零點;
(Ⅲ)當時,寫出函數(shù)的零點的個數(shù).(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點M(﹣1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的倍.
(1)求曲線E的方程;
(2)已知m≠0,設直線:x﹣my﹣1=0交曲線E于A,C兩點,直線:mx+y﹣m=0交曲線E于B,D兩點,若CD的斜率為﹣1時,求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長方形中, , 是中點(圖1).將△沿折起,使得(圖2)在圖2中:
(1)求證:平面 平面;
(2)在線段上是否存點,使得二面角為大小為,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com