2.已知函數(shù)$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示,將函數(shù)y=f(x)的圖象向左平移$\frac{4π}{3}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在區(qū)間$[{\frac{π}{2},\frac{5π}{2}}]$上的最大值為( 。
A.3B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 利用函數(shù)的圖象求出T,利用周期公式求出ω,利用函數(shù)的圖象經(jīng)過的特殊點(diǎn),集合φ的范圍,求出φ得到函數(shù)的解析式,進(jìn)而可求g(x)解析式,利用正弦函數(shù)的性質(zhì)即可得解.

解答 解:由圖象可知T=4π,從而ω=$\frac{1}{2}$,
將($\frac{π}{3}$,0),(0,-$\frac{3}{2}$)在函數(shù)圖象上,$\left\{\begin{array}{l}{Asin(\frac{π}{6}+φ)=0}\\{Asinφ=-\frac{3}{2}}\end{array}\right.$,|φ|<$\frac{π}{2}$,
可得:φ=-$\frac{π}{6}$,A=3,f(x)=3sin($\frac{1}{2}x$-$\frac{π}{6}$),
可得:g(x)=3sin[$\frac{1}{2}$(x+$\frac{4π}{3}$)-$\frac{π}{6}$]=3cos$\frac{1}{2}x$.
由x∈$[{\frac{π}{2},\frac{5π}{2}}]$,可得:$\frac{1}{2}x$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
可得:3cos$\frac{1}{2}x$∈[-3,$\frac{3\sqrt{2}}{2}$].
故選:C.

點(diǎn)評(píng) 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=-x2+14x+15,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=( 。
A.14B.15C.14或15D.15或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在三棱錐C-PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,點(diǎn)M是PC的中點(diǎn),點(diǎn)N在線段AB上,且MN⊥AB.
(1)求AN的長(zhǎng);
(2)求銳二面角P-NC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正六邊形ABCDEF內(nèi)接于圓O,連接AD,BE,現(xiàn)在往圓O內(nèi)投擲2000粒小米,則可以估計(jì)落在陰影區(qū)域內(nèi)的小米的粒數(shù)大致是( 。▍⒖紨(shù)據(jù):$\frac{π}{\sqrt{3}}$=1.82,$\frac{\sqrt{3}}{π}$=0.55)
A.550B.600C.650D.700

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}+a,x≤0\\{x^2}+1+a.x>0\end{array}\right.$,a為實(shí)數(shù),若f(2-x)≥f(x),則x的取值范圍是( 。
A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足,${a_n}=2+2{cos^2}\frac{nπ}{2}$,n∈N*,等差數(shù)列{bn}滿足a1=2b1,a2=b2
(1)求bn;
(2)記cn=a2n-1b2n-1+a2nb2n,求cn
(3)求數(shù)列{anbn}前2n項(xiàng)的和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“x>1“是“2x>1”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)=$\frac{x}{2x+2}$(x>0),計(jì)算觀察以下格式:
f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實(shí)得到當(dāng)n∈N*時(shí),fn(1)=$\frac{1}{3•{2}^{n}-2}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在多面體ABCDEF中,底面ABCD是菱形,AB=2,∠DAB=60°,EF∥AC,EF=$\sqrt{3}$.
(Ⅰ)求證:FC∥平面BDE;
(Ⅱ)若EA=ED,求證:AD⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案