精英家教網 > 高中數學 > 題目詳情

已知直線l:kx-y+1+2k=0(k∈R)
(1)證明:直線l過定點;
(2)若直線l不經過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為S,求S的最小值及此時直線l的方程.

(1)l過定點,(-2,1);(2)k∈[0,);(3)S的最小值為4,此時l方程為:x-2y+4=0.

解析試題分析:(1)將直線l方程化為點斜式得:y-1=k(x+2),可知其恒過定點(-2,1);(2)畫草圖可知:由于直線l恒過定點(-2,1),所以直線l不經過第四象限必須且只需即可;(3)直線l交x軸負半軸于點A,交y軸正半軸于點B,則知k>0,且可用k將A,B兩點坐標表示出來,從而就可將△AOB的面積為S表示成為k的函數,然后求此函數的最小值即可.
試題解析:(1)因為直線l:kx-y+1+2k=0(K∈R) y-1=k(x+2),所以直線l過定點(-2,1);
(2)由于直線l恒過定點(-2,1),畫出圖形,知要使直線l不經過第四象限必須且只需,故k∈[0,);

(3)由直線l交x軸負半軸于點A,交y軸正半軸于點B知:k>0,由直線l:kx-y+1+2k=0中,令,再令,則,所以有:
(當且僅當時,取等號),所以,S的最小值為4,此時l方程為:x-2y+4=0.
考點:1.直線方程;2.基本不等式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

直線關于直線對稱的直線方程是           

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求經過P(2,3)且在兩坐標軸上截距相等的直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1) 求不等式的解集:
(2)已知三角形的三個頂點是 求邊上的高所在直線的方程;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上截距相等,求切線的方程;
(2)若為圓C上任意一點,求的最大值與最小值;
(3)從圓C外一點P(x,y)向圓引切線PM,M為切點,O為坐標原點,且有|PM|=|PO|,求當|PM|最小時的點P的坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知兩點A(-1,2)、B(m,3).
(1)求直線AB的方程;
(2)已知實數m∈,求直線AB的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

如果不同的三條直線;不能構成三角形,則實數的值是     

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知兩條平行直線的方程分別是,則實數的值為_____________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知兩直線方程分別為,若,則直線的一個方向向量為            .

查看答案和解析>>

同步練習冊答案