【題目】在中,已知,,D是邊AC上的一點(diǎn),將沿BD折疊,得到三棱錐,若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍是( )
A.B.C.D.
【答案】C
【解析】
由題意可得,折疊前在圖1中,AM⊥BD垂足為N.設(shè)圖1中A點(diǎn)在BC上的射影為M1,運(yùn)動(dòng)點(diǎn)D可得,當(dāng)D點(diǎn)與C點(diǎn)無限接近時(shí),點(diǎn)M與點(diǎn)M1無限接近,得到BM>BM1.在圖2中,根據(jù)斜邊大于直角邊,可得BM<AB,由此可得x的取值范圍.
將△ABD沿BD折起,得到三棱錐A-BCD,且點(diǎn)A在底面BCD的射影M在線段BC上,
如圖2,AM⊥平面BCD,則AM⊥BD,過M作MN⊥BD,連接AN,則AN⊥BD,
因此,折疊前在圖1中,AM⊥BD,垂足為N.
在圖1中,過A作AM1⊥BC于M1,運(yùn)動(dòng)點(diǎn)D,當(dāng)D點(diǎn)與C點(diǎn)無限接近時(shí),折痕BD接近BC,此時(shí)M與點(diǎn)M1無限接近;
在圖2中,由于AB是Rt△ABM的斜邊,BM是直角邊,因此BM<AB
由此可得:BM1<BM<AB
因?yàn)椤?/span>ABC中,AB=2,BC=2,∠ABC=45°,由余弦定理可得AC=2,
B M1=
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見下表:
第一段生產(chǎn)的半成品質(zhì)量指標(biāo) | 或 | 或 | |
第二段生產(chǎn)的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產(chǎn)的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產(chǎn)的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:
若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.
(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;
(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;
(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價(jià)格是萬元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購買該設(shè)備?說明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))在上有兩個(gè)零點(diǎn),則的范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的圖象關(guān)于直線對(duì)稱,兩個(gè)相鄰的最高點(diǎn)之間的距離為.
(1)求的解析式;
(2)在△中,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知若,則稱為的原函數(shù),此時(shí)所有的原函數(shù)為,其中為常數(shù),如:,則(為常數(shù)).現(xiàn)已知函數(shù)的導(dǎo)函數(shù)為且對(duì)任意的實(shí)數(shù)都有(是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若存在單調(diào)增區(qū)間,求的取值范圍;
(Ⅱ)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出的取值范圍?若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com