【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域和值域;
(2)判斷函數(shù)f(x)的奇偶性,并證明.

【答案】
(1)解:由1﹣3x≠0得x≠0,

故函數(shù)f(x)的定義域為(﹣∞,0)∪(0,+∞).

由f(x)= ,可得3x= >0,

求得f(x)>1,或f(x)<﹣1,

f(x)的值域為(﹣∞,﹣1)∪(1,+∞).


(2)解:f(x)為奇函數(shù),理由如下:

因為函數(shù)f(x)的定義域為(﹣∞,0)∪(0,+∞),

,

所以,f(x)為奇函數(shù).


【解析】(1)由1﹣3x≠0得x≠0,求得函數(shù)f(x)的定義域,由3x= >0,求得f(x)的范圍,可得f(x)的值域.(2)因為函數(shù)f(x)的定義域關于原點對稱,且滿足f(﹣x)=﹣f(x),可得f(x)為奇函數(shù).
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法和函數(shù)的值域的相關知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質是相同的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點. (Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)求證:AQ∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個元素m、n,即滿足m∈A,n∈B,記為(m,n), (Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程 所對應的曲線表示焦點在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程 所對應的曲線表示焦點在x軸上的橢圓,且長軸長大于短軸長的 倍”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)設,試討論單調(diào)性;

(2)設,當時,任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=
(1)當 時,求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an﹣2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=2,f(bn+1)= ,(n∈N*),若cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),過其焦點作斜率為1的直線交拋物線, 兩點,且,

(1)求拋物線的方程;

(2)已知動點的圓心在拋物線上,且過點,若動圓軸交于兩點,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a、b、c∈Z)是奇函數(shù).
(1)若f(1)=1,f(2)﹣4>0,求f(x);
(2)若b=1,且f(x)>1對任意的x∈(1,+∞)都成立,求a的最小值.

查看答案和解析>>

同步練習冊答案