如圖所示,陰影部分表示的區(qū)域可用二元一次不等式組表示的
x+y-1≥0
x-2y+2≥0
x+y-1≥0
x-2y+2≥0
分析:根據(jù)圖象先確定直線的方程,利用二元一次不等式表示區(qū)域,用不等式組進(jìn)行表示即可.
解答:解:過(0,1)和(1,0)點(diǎn)的直線方程為x+y-1=0,
過(0,1),(-2,0)點(diǎn)的直線方程為
x
-2
+
y
1
=1
,即x-2y+2=0,
陰影部分的區(qū)域在直線x+y-1=0的上方,在直線x-2y+2=0的下方,
所以對應(yīng)的不等式組為:
x+y-1≥0
x-2y+2≥0

故答案為:
x+y-1≥0
x-2y+2≥0
點(diǎn)評:本題主要考查二元一次不等式組表示平面區(qū)域的問題,先求出直線方程,利用區(qū)域和直線的位置關(guān)系確定不等式組即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
(2)求y的最大值及此時(shí)x的值;
(3)在第(2)問的條件下,設(shè)F是CD的中點(diǎn),問是否存在這樣的動點(diǎn)P,它在此棱錐的表面(包含底面ABCD)運(yùn)動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計(jì)算軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
(2)求y的最大值及此時(shí)x的值;
(3)在第(2)問的條件下,設(shè)F是CD的中點(diǎn),問是否存在這樣的動點(diǎn)P,它在此棱錐的表面(包含底面ABCD)運(yùn)動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計(jì)算軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,將y表為x的函數(shù);
(2)求y的最大值及此時(shí)x的值;
(3)在第(2)問的條件下,設(shè)F是CD的中點(diǎn),問是否存在這樣的動點(diǎn)P,它在此棱錐的表面(包含底面ABCD)運(yùn)動,且FP⊥AC.如果存在,在圖中畫出其軌跡并計(jì)算軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案