A. | [8,23] | B. | [8,25] | C. | [6,23] | D. | [6,25] |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合兩點間的距離公式進行求解即可.
解答 解:z=x2+y2+2x+2y=(x+1)2+(y+1)2-2,
設(shè)m=(x+1)2+(y+1)2,則m的幾何意義是區(qū)域內(nèi)的點到點D(-1,-1)的距離的平方,
作出不等式組對應(yīng)的平面區(qū)域如圖,
則點D到直線x+y-2=0的距離最小,此時d=$\frac{|-1-1-2|}{\sqrt{2}}=\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,
AD的距離最大,由$\left\{\begin{array}{l}{x=2}\\{x-2y+4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
則AD=$\sqrt{(2+1)^{2}+(3+1)^{2}}$=$\sqrt{9+16}=\sqrt{25}$=5,
即(2$\sqrt{2}$)2≤m≤25,即8≤m≤25,
則6≤m-2≤23,
即6≤z≤23,
故選:C.
點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)零點間的距離公式,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{7}{9},\frac{7}{3})$ | B. | $(-\frac{7}{9},\frac{7}{3})$ | C. | $(\frac{7}{9},-\frac{7}{3})$ | D. | $(-\frac{7}{9},-\frac{7}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<4} | B. | {x|x≤3或x≥4} | C. | {x|-2≤x≤一1} | D. | {x|-1≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | -1或1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-y2=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | C. | x2-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com