分析 確定△QAP為等邊三角形,設AQ=2R,則OP=R,利用勾股定理,結合余弦定理,即可得出結論
解答 解:因為∠PAQ=60°且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,
所以△QAP為等邊三角形,
設AQ=2R,則OP=R,
漸近線方程為y=$\frac{a}$x,A(a,0),取PQ的中點M,則AM=$\frac{|-ab|}{\sqrt{{a}^{2}+^{2}}}$
由勾股定理可得(2R)2-R2=($\frac{|-ab|}{\sqrt{{a}^{2}+^{2}}}$)2,
所以(ab)2=3R2(a2+b2)①
在△OQA中,$\frac{(3R)^{2}+(2R)^{2}-{a}^{2}}{2×3R×2R}$=$\frac{1}{2}$,所以7R2=a2②
①②結合c2=a2+b2,可得e=$\frac{c}{a}$=$\frac{\sqrt{7}}{2}$.
故答案為:$\frac{{\sqrt{7}}}{2}$
點評 本題考查雙曲線的性質,考查余弦定理、勾股定理,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 13 | B. | 12 | C. | 10 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com