18.已知a,b,c分別是△ABC中∠A,∠B,∠C所對應的邊長,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A;
(2)若a=2,求△ABC周長的取值范圍.

分析 (1)由正弦定理及兩角和的正弦公式可得sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A.
(2)通過余弦定理以及基本不等式求出b+c的范圍,再利用三角形三邊的關(guān)系求出b+c的范圍,即可得解.

解答 解:(1)∵acosC+$\sqrt{3}$asinC-b-c=0,
∴sinAcosC+$\sqrt{3}$sinAsinC-sinB-sinC=0,
∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,
∵sinC≠0,
∴$\sqrt{3}$sinA-cosA=1,
∴sin(A-30°)=$\frac{1}{2}$,
∴A-30°=30°,
∴A=60°;
(2)由余弦定理得,a2=b2+c2-2bccosA,
則4=b2+c2-bc,
∴(b+c)2-3bc=4,
即3bc=(b+c)2-4≤3[$\frac{1}{2}$(b+c)]2,
化簡得,(b+c)2≤16(當且僅當b=c時取等號),
則b+c≤4,又b+c>a=2,
綜上得,b+c的取值范圍是(2,4],
可得△ABC周長的取值范圍為:(4,6].

點評 本題綜合考查了三角公式中的正弦定理、余弦定理、基本不等式的綜合應用,誘導公式與輔助角公式在三角函數(shù)化簡中的應用是求解的基礎,解題的關(guān)鍵是熟練掌握基本公式,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.若角α的終邊與$\frac{π}{6}$的終邊關(guān)于y軸對稱,則角α的取值集合為$\{α|α=2kπ+\frac{5π}{6},k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知平面DBC與直線PA均垂直于三角形ABC所在平面,
(1)求證:PA∥平面DBC;
(2)若AD⊥BC,求證:平面DBC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設x∈{y∈N|0≤y≤9},則log2x∈N的概率為( 。
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知公差為正數(shù)的等差數(shù)列{an}的前n項和為Sn,且a2•a8=115,S9=126,數(shù)列{bn}的前n項和${T_n}={2^{n+1}}-2(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)求數(shù)列{an•bn}的前n項和為Mn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列命題中真命題的是( 。
A.若a>b,則ac2>bc2
B.實數(shù)a,b,c滿足b2=ac,則a,b,c成等比數(shù)列
C.若$θ∈({0,\frac{π}{2}})$,則$y=sinθ+\frac{2}{sinθ}$的最小值為$2\sqrt{2}$
D.若數(shù)列{n2+λn}為遞增數(shù)列,則λ>-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等比數(shù)列{bn}的公比為$\frac{1}{2}$,數(shù)列{an}滿足a1=1,a2=3,an+1-an=2n•bn
(1)求{an}和{bn}的通項公式;
(2)求$\{\frac{a_n}{b_n}\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項和為Sn,點$(n,{S_n})(n∈{N^*})$均在函數(shù)y=f(x) 的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)令${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知拋物線y2=4x的焦點為F,過焦點F的直線AC、BD分別與拋物線交于點A,C
和點B,D.
(1)若直線AC的斜率為1,點C在第一象限,求$\frac{{|{CF}|}}{{|{AF}|}}$的值;
(2)若AC⊥BD,求|AC|+|BD|的最小值.

查看答案和解析>>

同步練習冊答案